'N-of-1-pathways' unveils personal deregulated mechanisms from a single pair of RNA-seq samples: Towards precision medicine

Vincent Gardeux, Ikbel Achour, Jianrong Li, Mark Maienschein-Cline, Haiquan Li, Lorenzo Pesce, Gurunadh Parinandi, Neil Bahroos, Robert Winn, Ian Foster, Joe G.N. Garcia, Yves A. Lussier*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Background: The emergence of precision medicine allowed the incorporation of individual molecular data into patient care. Indeed, DNA sequencing predicts somatic mutations in individual patients. However, these genetic features overlook dynamic epigenetic and phenotypic response to therapy. Meanwhile, accurate personal transcriptome interpretation remains an unmet challenge. Further, N-of-1 (single-subject) efficacy trials are increasingly pursued, but are underpowered for molecular marker discovery. Method: 'N-of-1-pathways' is a global framework relying on three principles: (i) the statistical universe is a single patient; (ii) significance is derived from geneset/ biomodules powered by paired samples from the same patient; and (iii) similarity between genesets/biomodules assesses commonality and differences, within-study and cross-studies. Thus, patient gene-level profiles are transformed into deregulated pathways. From RNA-Seq of 55 lung adenocarcinoma patients, N-of-1-pathways predicts the deregulated pathways of each patient. Results: Cross-patient N-of-1-pathways obtains comparable results with conventional genesets enrichment analysis (GSEA) and differentially expressed gene (DEG) enrichment, validated in three external evaluations. Moreover, heatmap and star plots highlight both individual and shared mechanisms ranging from molecular to organ-systems levels (eg, DNA repair, signaling, immune response). Patients were ranked based on the similarity of their deregulated mechanisms to those of an independent gold standard, generating unsupervised clusters of diametric extreme survival phenotypes (p=0.03). Conclusions: The N-of-1-pathways framework provides a robust statistical and relevant biological interpretation of individual disease-free survival that is often overlooked in conventional cross-patient studies. It enables mechanism-level classifiers with smaller cohorts as well as N-of-1 studies.

Original languageEnglish (US)
Pages (from-to)1015-1025
Number of pages11
JournalJournal of the American Medical Informatics Association
Volume21
Issue number6
DOIs
StatePublished - 2014

ASJC Scopus subject areas

  • Health Informatics

Fingerprint

Dive into the research topics of ''N-of-1-pathways' unveils personal deregulated mechanisms from a single pair of RNA-seq samples: Towards precision medicine'. Together they form a unique fingerprint.

Cite this