Nanocompartmentalization of the Nuclear Pore Lumen

Kai Huang, Mario Tagliazucchi, Sung Hyun Park, Yitzhak Rabin, Igal Szleifer*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


The nuclear pore complex (NPC) employs the intrinsically disordered regions (IDRs) from a family of phenylalanine-glycine-rich nucleoporins (FG-Nups) to control nucleocytoplasmic transport. It has been a long-standing mystery how the IDR-mediated mass exchange can be rapid yet selective. Here, we use a computational microscope to show that nanocompartmentalization of IDR subdomains leads to a remarkably elaborate gating structure as programmed by the amino acid sequences. In particular, we reveal a heterogeneous permeability barrier that combines an inner ring barrier with two vestibular condensates. Throughout the NPC, we find a polarized electrostatic potential and a diffuse thermoreversible FG network featuring mosaic FG territories with low FG-FG pairing fraction. Our theoretical anatomy of the central transporter sheds light into the sequence-structure-function relationship of the FG-Nups and provides a picture of nucleocytoplasmic mass exchange that allows a reconciliation of transport efficiency and specificity.

Original languageEnglish (US)
JournalBiophysical Journal
StateAccepted/In press - 2019

ASJC Scopus subject areas

  • Biophysics

Fingerprint Dive into the research topics of 'Nanocompartmentalization of the Nuclear Pore Lumen'. Together they form a unique fingerprint.

Cite this