Nanoelectronic devices from self-organized molecular switches

P. M. Mendes, A. H. Flood, J. F. Stoddart*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

98 Scopus citations


The development of molecular electronic switching devices for memory and computing applications presents one of the most exciting contemporary challenges in nanoscience and nanotechnology. One basis for such a device is a two-terminal molecular-switch tunnel junction that can be electrically switched between high- and low-conductance states. Towards this end, the concepts of self-assembly and molecular recognition have been pursued actively for synthesizing two families of redox-controllable mechanically interlocked molecules - bistable catenanes and bistable rotaxanes - as potential candidates for solid-state molecular-switch tunnel junctions. This article reviews logically the development and understanding of Langmuir, Langmuir-Blodgett and self-assembled monolayers of amphiphilic bistable and functionalized bistable rotaxanes and their catenanes counterparts. Our increased understanding of the superstructures of these monolayers has guided our recent efforts to incorporate these self-organized molecular switches into devices. The methodologies that are being employed are in their early stages of development. Certain characteristics of the molecules, monolayers, electrodes and devices are emerging that serve as lessons to be consider in responding to the ample opportunities for further research and process development in the field of nanoelectronics.

Original languageEnglish (US)
Pages (from-to)1197-1209
Number of pages13
JournalApplied Physics A: Materials Science and Processing
Issue number6
StatePublished - Mar 2005

ASJC Scopus subject areas

  • General Chemistry
  • General Materials Science


Dive into the research topics of 'Nanoelectronic devices from self-organized molecular switches'. Together they form a unique fingerprint.

Cite this