TY - JOUR
T1 - Nanograin composite model studies of nanocrystalline gadolinia-doped ceria
AU - Yeh, Ted C.
AU - Perry, Nicola H.
AU - Mason, Thomas O.
N1 - Copyright:
Copyright 2011 Elsevier B.V., All rights reserved.
PY - 2011/4
Y1 - 2011/4
N2 - Nanocrystalline gadolinia-doped ceria (GDC) specimens with grain sizes ranging from 10 to 100 nm were studied by AC-impedance spectroscopy over the temperature range of ∼150°- ∼ 300°C, and were analyzed by the nanograin composite model (n-GCM), which is capable of extracting local properties (grain-core conductivity, grain-boundary conductivity, grain-boundary dielectric constant) and also grain-boundary width. The grain-core dielectric constant, a necessary input parameter for the n-GCM procedure, was measured separately on a microcrystalline GDC specimen sintered from identical powders. In spite of modest increases in grain-boundary conductivity at the nanoscale, the total conductivity exhibited a monotonic decrease with decreasing grain size. This behavior was attributed to the large increase in the number of grain-boundary barriers at the nanoscale, which overwhelms the slight increase in grain-boundary conductivity. An unusual "up-and-down" behavior was observed in grain-boundary conductivity versus grain size, which was accounted for by a similar trend in the preexponential factor versus grain size. Effective grain-boundary widths, also determined by the n-GCM, exhibited a similar "up-and-down" behavior, which probably reflects the differences in thermal history from specimen-to-specimen.
AB - Nanocrystalline gadolinia-doped ceria (GDC) specimens with grain sizes ranging from 10 to 100 nm were studied by AC-impedance spectroscopy over the temperature range of ∼150°- ∼ 300°C, and were analyzed by the nanograin composite model (n-GCM), which is capable of extracting local properties (grain-core conductivity, grain-boundary conductivity, grain-boundary dielectric constant) and also grain-boundary width. The grain-core dielectric constant, a necessary input parameter for the n-GCM procedure, was measured separately on a microcrystalline GDC specimen sintered from identical powders. In spite of modest increases in grain-boundary conductivity at the nanoscale, the total conductivity exhibited a monotonic decrease with decreasing grain size. This behavior was attributed to the large increase in the number of grain-boundary barriers at the nanoscale, which overwhelms the slight increase in grain-boundary conductivity. An unusual "up-and-down" behavior was observed in grain-boundary conductivity versus grain size, which was accounted for by a similar trend in the preexponential factor versus grain size. Effective grain-boundary widths, also determined by the n-GCM, exhibited a similar "up-and-down" behavior, which probably reflects the differences in thermal history from specimen-to-specimen.
UR - http://www.scopus.com/inward/record.url?scp=79953704495&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79953704495&partnerID=8YFLogxK
U2 - 10.1111/j.1551-2916.2010.04200.x
DO - 10.1111/j.1551-2916.2010.04200.x
M3 - Article
AN - SCOPUS:79953704495
SN - 0002-7820
VL - 94
SP - 1073
EP - 1078
JO - Journal of the American Ceramic Society
JF - Journal of the American Ceramic Society
IS - 4
ER -