TY - JOUR
T1 - Nanoparticle, Size, Shape, and Interfacial Effects on Leakage Current Density, Permittivity, and Breakdown Strength of Metal Oxide-Polyolefin Nanocomposites
T2 - Experiment and Theory
AU - Guo, Neng
AU - DiBenedetto, Sara A.
AU - Tewari, Pratyush
AU - Lanagan, Michael T.
AU - Ratner, Mark A.
AU - Marks, Tobin J.
PY - 2010/2/23
Y1 - 2010/2/23
N2 - A series of 0-3 metal oxide-polyolefin nanocomposites are synthesized via in situ olefin polymerization, using the following single-site metallocene catalysts: C2-symmetric dichloro[rac-ethylenebisindenyl]-zirconium(IV),Me 2Si( tBuN)(η 5-C 5Me 4)TiCl 2, and(η 5-C 5Me 5)TiCl 3 immobilized onmethylaluminoxane (MAO)-treated BaTiO 3, ZrO 2, 3-mol %-yttria-stabilized zirconia, 8-mol%-yttria-stabilized zirconia, sphere-shaped TiO2 nanoparticles, and rod-shaped TiO 2 nanoparticles. The resulting compositematerials are structurally characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), 13C nuclear magnetic resonance (NMR) spectroscopy, and differential scanning calorimetry (DSC). TEM analysis shows that the nanoparticles are well-dispersed in the polymer matrix, with each individual nanoparticle surrounded by polymer. Electrical measurements reveal that most of these nanocomposites have leakage current densities of ∼10 -6-10 -8 A/cm 2; relative permittivities increase as the nanoparticle volume fraction increases, withmeasured values as high as 6.1. At the same volume fraction, rod-shaped TiO 2 nanoparticle-isotactic polypropylene nanocomposites exhibit significantly greater permittivities than the corresponding sphere-shaped TiO 2 nanoparticleisotactic polypropylene nanocomposites. Effective medium theories fail to give a quantitative description of the capacitance behavior, but do aid substantially in interpreting the trends qualitatively. The energy storage densities of these nanocomposites are estimated to be as high as 9.4 J/cm 3.
AB - A series of 0-3 metal oxide-polyolefin nanocomposites are synthesized via in situ olefin polymerization, using the following single-site metallocene catalysts: C2-symmetric dichloro[rac-ethylenebisindenyl]-zirconium(IV),Me 2Si( tBuN)(η 5-C 5Me 4)TiCl 2, and(η 5-C 5Me 5)TiCl 3 immobilized onmethylaluminoxane (MAO)-treated BaTiO 3, ZrO 2, 3-mol %-yttria-stabilized zirconia, 8-mol%-yttria-stabilized zirconia, sphere-shaped TiO2 nanoparticles, and rod-shaped TiO 2 nanoparticles. The resulting compositematerials are structurally characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), 13C nuclear magnetic resonance (NMR) spectroscopy, and differential scanning calorimetry (DSC). TEM analysis shows that the nanoparticles are well-dispersed in the polymer matrix, with each individual nanoparticle surrounded by polymer. Electrical measurements reveal that most of these nanocomposites have leakage current densities of ∼10 -6-10 -8 A/cm 2; relative permittivities increase as the nanoparticle volume fraction increases, withmeasured values as high as 6.1. At the same volume fraction, rod-shaped TiO 2 nanoparticle-isotactic polypropylene nanocomposites exhibit significantly greater permittivities than the corresponding sphere-shaped TiO 2 nanoparticleisotactic polypropylene nanocomposites. Effective medium theories fail to give a quantitative description of the capacitance behavior, but do aid substantially in interpreting the trends qualitatively. The energy storage densities of these nanocomposites are estimated to be as high as 9.4 J/cm 3.
UR - http://www.scopus.com/inward/record.url?scp=77049105443&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77049105443&partnerID=8YFLogxK
U2 - 10.1021/cm902852h
DO - 10.1021/cm902852h
M3 - Article
AN - SCOPUS:77049105443
SN - 0897-4756
VL - 22
SP - 1567
EP - 1578
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 4
ER -