Nanoscale Poroelasticity of the Tectorial Membrane Determines Hair Bundle Deflections

Jonathan B. Sellon, Mojtaba Azadi, Ramin Oftadeh, Hadi Tavakoli Nia, Roozbeh Ghaffari, Alan J. Grodzinsky, Dennis M. Freeman

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Stereociliary imprints in the tectorial membrane (TM) have been taken as evidence that outer hair cells are sensitive to shearing displacements of the TM, which plays a key role in shaping cochlear sensitivity and frequency selectivity via resonance and traveling wave mechanisms. However, the TM is highly hydrated (97% water by weight), suggesting that the TM may be flexible even at the level of single hair cells. Here we show that nanoscale oscillatory displacements of microscale spherical probes in contact with the TM are resisted by frequency-dependent forces that are in phase with TM displacement at low and high frequencies, but are in phase with TM velocity at transition frequencies. The phase lead can be as much as a quarter of a cycle, thereby contributing to frequency selectivity and stability of cochlear amplification.

Original languageEnglish (US)
Article number028101
JournalPhysical review letters
Volume122
Issue number2
DOIs
StatePublished - Jan 16 2019

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Nanoscale Poroelasticity of the Tectorial Membrane Determines Hair Bundle Deflections'. Together they form a unique fingerprint.

Cite this