Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays

John C. Hulteen, David A. Treichel, Matthew T. Smith, Michelle L. Duval, Traci R. Jensen, Richard P. Van Duyne

Research output: Contribution to journalArticlepeer-review

747 Scopus citations


Nanosphere lithography (NSL) is an inexpensive, inherently parallel, high-throughput, and materials-general nanofabrication technique capable of producing well-ordered 2D periodic particle arrays of nanoparticles. This paper focuses on the synthesis of size-tunable silver nanoparticle arrays by nanosphere lithography and their structural characterization by atomic force microscopy (AFM). The in-plane diameter, a, of Ag nanoparticles was tuned from 21 to 126 nm by systematic variation of the nanosphere diameter, D. Similarly, the out-of-plane height, b, was tuned from 4 to 47 nm by varying the mass thickness, dm, of the Ag overlayer. Experimental measurements of a, b, and interparticle spacing dip of many individual nanoparticles as a function of D and dm were carried out using AFM. These studies show (i) b = dm, (ii) dip accurately corresponds to predictions based on the nanosphere mask geometry, (iii) a, after correction for AFM tip convolution, is governed only by the mask geometry and the standard deviation, σD, of the nanosphere diameter, and (iv) line-of-sight deposition is strictly operative. Furthermore, we have established that nanosphere lithography can fabricate nanoparticles that contain only ca. 4×104 atoms and are in the size range of a surface-confined cluster.

Original languageEnglish (US)
Pages (from-to)3854-3863
Number of pages10
JournalJournal of Physical Chemistry B
Issue number19
StatePublished - May 13 1999

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry


Dive into the research topics of 'Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays'. Together they form a unique fingerprint.

Cite this