TY - JOUR
T1 - Natural genetic variation determines susceptibility to aggregation or toxicity in a C. elegans model for polyglutamine disease
AU - Gidalevitz, Tali
AU - Wang, Ning
AU - Deravaj, Tanuja
AU - Alexander-Floyd, Jasmine
AU - Morimoto, Richard I.
N1 - Funding Information:
We thank members of the Morimoto laboratory for discussions and comments on the manuscript, and Dr Jesper S. Pedersen for providing aggregate-counting software. We thank the Caenorhabditis Genetics Center, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440), for providing some of the C. elegans strains. These studies were supported by grants from the National Institutes of Health (NIGMS, NIA, NINDS), the Ellison Medical Foundation, and the Daniel F and Ada L Rice Foundation to RIM.
PY - 2013/9/30
Y1 - 2013/9/30
N2 - Background: Monogenic gain-of-function protein aggregation diseases, including Huntington's disease, exhibit substantial variability in age of onset, penetrance, and clinical symptoms, even between individuals with similar or identical mutations. This difference in phenotypic expression of proteotoxic mutations is proposed to be due, at least in part, to the variability in genetic background. To address this, we examined the role of natural variation in defining the susceptibility of genetically diverse individuals to protein aggregation and toxicity, using the Caenorhabditis elegans polyglutamine model.Results: Introgression of polyQ40 into three wild genetic backgrounds uncovered wide variation in onset of aggregation and corresponding toxicity, as well as alteration in the cell-specific susceptibility to aggregation. To further dissect these relationships, we established a panel of 21 recombinant inbred lines that showed a broad range of aggregation phenotypes, independent of differences in expression levels. We found that aggregation is a transgressive trait, and does not always correlate with measures of toxicity, such as early onset of muscle dysfunction, egg-laying deficits, or reduced lifespan. Moreover, distinct measures of proteotoxicity were independently modified by the genetic background.Conclusions: Resistance to protein aggregation and the ability to restrict its associated cellular dysfunction are independently controlled by the natural variation in genetic background, revealing important new considerations in the search for targets for therapeutic intervention in conformational diseases. Thus, our C. elegans model can serve as a powerful tool to dissect the contribution of natural variation to individual susceptibility to proteotoxicity. Please see related commentary by Kaeberlein, http://www.biomedcentral.com/1741-7007/11/102.
AB - Background: Monogenic gain-of-function protein aggregation diseases, including Huntington's disease, exhibit substantial variability in age of onset, penetrance, and clinical symptoms, even between individuals with similar or identical mutations. This difference in phenotypic expression of proteotoxic mutations is proposed to be due, at least in part, to the variability in genetic background. To address this, we examined the role of natural variation in defining the susceptibility of genetically diverse individuals to protein aggregation and toxicity, using the Caenorhabditis elegans polyglutamine model.Results: Introgression of polyQ40 into three wild genetic backgrounds uncovered wide variation in onset of aggregation and corresponding toxicity, as well as alteration in the cell-specific susceptibility to aggregation. To further dissect these relationships, we established a panel of 21 recombinant inbred lines that showed a broad range of aggregation phenotypes, independent of differences in expression levels. We found that aggregation is a transgressive trait, and does not always correlate with measures of toxicity, such as early onset of muscle dysfunction, egg-laying deficits, or reduced lifespan. Moreover, distinct measures of proteotoxicity were independently modified by the genetic background.Conclusions: Resistance to protein aggregation and the ability to restrict its associated cellular dysfunction are independently controlled by the natural variation in genetic background, revealing important new considerations in the search for targets for therapeutic intervention in conformational diseases. Thus, our C. elegans model can serve as a powerful tool to dissect the contribution of natural variation to individual susceptibility to proteotoxicity. Please see related commentary by Kaeberlein, http://www.biomedcentral.com/1741-7007/11/102.
KW - Conformational disease
KW - Genetic modifier
KW - Natural variation
KW - Polyglutamine
KW - Protein aggregation
UR - http://www.scopus.com/inward/record.url?scp=84884686553&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884686553&partnerID=8YFLogxK
U2 - 10.1186/1741-7007-11-100
DO - 10.1186/1741-7007-11-100
M3 - Article
C2 - 24079614
AN - SCOPUS:84884686553
SN - 1741-7007
VL - 11
JO - BMC Biology
JF - BMC Biology
M1 - 100
ER -