TY - GEN
T1 - Network robustness via global k-cores
AU - Dey, Palash
AU - Maity, Suman Kalyan
AU - Medya, Sourav
AU - Silva, Arlei
N1 - Publisher Copyright:
© 2021 International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.
PY - 2021
Y1 - 2021
N2 - Network robustness is a measure a network's ability to survive adversarial attacks. But not all parts of a network are equal. K-cores, which are dense subgraphs, are known to capture some of the key properties of many real-life networks. Therefore, previous work has attempted to model network robustness via the stability of its k-core. However, these approaches account for a single core value and thus fail to encode a global network resilience measure. In this paper, we address this limitation by proposing a novel notion of network resilience that is defined over all cores. In particular, we evaluate the stability of the network under node removals with respect to each node's initial core. Our goal is to compute robustness via a combinatorial problem: find b most critical nodes to delete such that the number of nodes that fall from their initial cores is maximized. One of our contributions is showing that it is NP-hard to achieve any polynomial factor approximation of the given objective. We also present a fine-grained complexity analysis of this problem under the lens of parameterized complexity theory for several natural parameters. Moreover, we show two applications of our notion of robustness: measuring the evolution of species and characterizing networks arising from different domains.
AB - Network robustness is a measure a network's ability to survive adversarial attacks. But not all parts of a network are equal. K-cores, which are dense subgraphs, are known to capture some of the key properties of many real-life networks. Therefore, previous work has attempted to model network robustness via the stability of its k-core. However, these approaches account for a single core value and thus fail to encode a global network resilience measure. In this paper, we address this limitation by proposing a novel notion of network resilience that is defined over all cores. In particular, we evaluate the stability of the network under node removals with respect to each node's initial core. Our goal is to compute robustness via a combinatorial problem: find b most critical nodes to delete such that the number of nodes that fall from their initial cores is maximized. One of our contributions is showing that it is NP-hard to achieve any polynomial factor approximation of the given objective. We also present a fine-grained complexity analysis of this problem under the lens of parameterized complexity theory for several natural parameters. Moreover, we show two applications of our notion of robustness: measuring the evolution of species and characterizing networks arising from different domains.
KW - K-core
KW - Network optimization
KW - Network robustness
UR - http://www.scopus.com/inward/record.url?scp=85112228641&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85112228641&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85112228641
T3 - Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
SP - 438
EP - 446
BT - 20th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2021
PB - International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)
T2 - 20th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2021
Y2 - 3 May 2021 through 7 May 2021
ER -