Abstract
A temperature sensitive mutant of vesicular stomatitis virus which does not mature properly when grown at 39°C promoted extensive fusion of murine neuroblastoma cells at this nonpermissive temperature. Polykaryocytes apparently formed as a result of fusion from within the cells that requires low doses of infectious virions for its promotion and is dependent on viral protein synthesis. Although 90% of infected N-18 neuroblastoma cells were fused by 15 h after infection, larger polykaryocytes continued to form, leading to an average of 28 nuclei per polykaryocyte as a result of polykaryocytes fusing to each other. Two neuroblastoma cell lines have been observed to undergo fusion, whereas three other cell lines (BHK-21, CHO, and 3T3) were incapable of forming polykaryocytes, suggesting that nervous system-derived cells are particularly susceptible to vesicular stomatitis virus-induced fusion. Although the normal assembly of the protein components of this virus is deficient at 39°C, the G glycoprotein was inserted into the infected cell membranes at this temperature. Two lines of evidence suggest that the expression of G at the cell surface promotes this polykaryocyte formation: (i) inhibition of glycosylation, which may be involved in the migration of the G protein to the cellular plasma membranes, will inhibit the cell fusion reaction; (ii) addition of antiserum, directed toward the purified G glycoprotein, will also inhibit cell fusion.
Original language | English (US) |
---|---|
Pages (from-to) | 883-890 |
Number of pages | 8 |
Journal | Unknown Journal |
Volume | 30 |
Issue number | 3 |
DOIs | |
State | Published - 1979 |
ASJC Scopus subject areas
- Insect Science
- Virology
- Microbiology
- Immunology