Neurons with two sites of synaptic integration learn invariant representations

Konrad P. Körding*, Peter König

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Neurons in mammalian cerebral cortex combine specific responses with respect to some stimulus features with invariant responses to other stimulus features. For example, in primary visual cortex, complex cells code for orientation of a contour but ignore its position to a certain degree. In higher areas, such as the inferotemporal cortex, translation-invariant, rotation-invariant, and even view point-invariant responses can be observed. Such properties are of obvious interest to artificial systems performing tasks like pattern recognition. It remains to be resolved how such response properties develop in biological systems. Here we present an unsupervised learning rule that addresses this problem. It is based on a neuron model with two sites of synaptic integration, allowing qualitatively different effects of input to basal and apical dendritic trees, respectively. Without supervision, the system learns to extract invariance properties using temporal or spatial continuity of stimuli. Furthermore, top-down information can be smoothly integrated in the same framework. Thus, this model lends a physiological implementation to approaches of unsupervised learning of invariant-response properties.

Original languageEnglish (US)
Pages (from-to)2823-2849
Number of pages27
JournalNeural Computation
Volume13
Issue number12
DOIs
StatePublished - Dec 2001

ASJC Scopus subject areas

  • Arts and Humanities (miscellaneous)
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Neurons with two sites of synaptic integration learn invariant representations'. Together they form a unique fingerprint.

Cite this