Neurophysiological, linguistic, and cognitive predictors of children's ability to perceive speech in noise

Elaine C. Thompson, Jennifer Krizman, Travis White-Schwoch, T. Nicol, Ryne Estabrook, Nina Kraus*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Hearing in noisy environments is a complicated task that engages attention, memory, linguistic knowledge, and precise auditory-neurophysiological processing of sound. Accumulating evidence in school-aged children and adults suggests these mechanisms vary with the task's demands. For instance, co-located speech and noise demands a large cognitive load and recruits working memory, while spatially separating speech and noise diminishes this load and draws on alternative skills. Past research has focused on one or two mechanisms underlying speech-in-noise perception in isolation; few studies have considered multiple factors in tandem, or how they interact during critical developmental years. This project sought to test complementary hypotheses involving neurophysiological, cognitive, and linguistic processes supporting speech-in-noise perception in young children under different masking conditions (co-located, spatially separated). Structural equation modeling was used to identify latent constructs and examine their contributions as predictors. Results reveal cognitive and language skills operate as a single factor supporting speech-in-noise perception under different masking conditions. While neural coding of the F0 supports perception in both co-located and spatially separated conditions, neural timing predicts perception of spatially separated listening exclusively. Together, these results suggest co-located and spatially separated speech-in-noise perception draw on similar cognitive/linguistic skills, but distinct neural factors, in early childhood.

Original languageEnglish (US)
Article number100672
JournalDevelopmental Cognitive Neuroscience
StatePublished - Oct 2019


  • Auditory development
  • Auditory processing
  • Cognition
  • Electrophysiology
  • FFR
  • Language
  • Speech-in-noise perception
  • Structural equation modeling

ASJC Scopus subject areas

  • Cognitive Neuroscience


Dive into the research topics of 'Neurophysiological, linguistic, and cognitive predictors of children's ability to perceive speech in noise'. Together they form a unique fingerprint.

Cite this