Neuroprosthetic device for functional training, compensation or rehabilitation of lower limbs during gait

M. Loreiro, S. Britez, S. Casco, J. C. Moreno, Jose L Pons, F. Brunetti

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

One of the most promising alternatives to train, compensate or rehabilitate patients after cerebrovascular accidents, spinal cord injuries, head trauma and physiological pathological tremors causing gait disorders are the motor neuroprosthestic devices (NP). However, there are not portable and flexible NP devices capable of fulfilling the requirements of different rehabilitation scenarios. In this work, the novel and flexible H-GAIT NP for lower limbs training and compensation is presented. This NP is able to detect four subphases of gait cycle and provide configurable surface stimulation patterns at each subphase. The H-GAIT NP can stimulate 4 independent channels for each subphase, allowing to reproduce diverse muscle activation patterns that can be needed in different rehabilitation scenarios. In order to validate the concept, several tests were carried on with 5 neuromuscularly intact participants and three different gait speeds in order to validate detection of the subphases. The algorithm showed an acceptable performance (over 95 % of gait subphases successfully detected in all cases at three different gait speeds (0.7, 0.85, and 0.97 m/s). The results were consistent among participants. To show the potential use of the NP in different rehabilitation scenarios, one stimulation profile was configured for hemiplegic gait compensation.

Original languageEnglish (US)
Title of host publication9th International IEEE EMBS Conference on Neural Engineering, NER 2019
PublisherIEEE Computer Society
Pages1183-1186
Number of pages4
ISBN (Electronic)9781538679210
DOIs
StatePublished - May 16 2019
Event9th International IEEE EMBS Conference on Neural Engineering, NER 2019 - San Francisco, United States
Duration: Mar 20 2019Mar 23 2019

Publication series

NameInternational IEEE/EMBS Conference on Neural Engineering, NER
Volume2019-March
ISSN (Print)1948-3546
ISSN (Electronic)1948-3554

Conference

Conference9th International IEEE EMBS Conference on Neural Engineering, NER 2019
CountryUnited States
CitySan Francisco
Period3/20/193/23/19

ASJC Scopus subject areas

  • Artificial Intelligence
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Neuroprosthetic device for functional training, compensation or rehabilitation of lower limbs during gait'. Together they form a unique fingerprint.

Cite this