TY - JOUR
T1 - Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank
AU - Pardo, Ivanesa
AU - Lillemoe, Heather A.
AU - Blosser, Rachel J.
AU - Choi, Mi Ran
AU - Sauder, Candice A.M.
AU - Doxey, Diane K.
AU - Mathieson, Theresa
AU - Hancock, Bradley A.
AU - Baptiste, Dadrie
AU - Atale, Rutuja
AU - Hickenbotham, Matthew
AU - Zhu, Jin
AU - Glasscock, Jarret
AU - Storniolo, Anna Maria V.
AU - Zheng, Faye
AU - Doerge, RW W.
AU - Liu, Yunlong
AU - Badve, Sunil
AU - Radovich, Milan
AU - Clare, Susan E.
N1 - Funding Information:
The authors thank Drs. Robert J. Goulet, Jr., Valerie P. Jackson, Erika L. Rager, Patricia R. Kennedy, Monet Williams-Bowling, Barbara Savader, Stephen M. Westphal, Robert E. Pennington, Katherine H. Walker, Hadley E. Ritter, Richard C. Berg, Jr., and Roger Bangs for their donation of their time and technical expertise for the purpose of obtaining the tissue cores. Mark Mooney, James Elliott, and Ryan Richt engaged with us in discussions of next-generation sequencing and data analysis. We also thank Dr. Mayandi Sivaguru for assistance with laser capture microdissection. Dr. Marguerite Shepard’s assistance in verifying phase of the menstrual cycle based on serum hormone concentrations and insights regarding the donors who were using contraception were invaluable. Drs. George W. Sledge, Jr. and Eric A. Wiebke were unstinting in their support of the KTB. The authors thank the staff of the KTB; and the thousands of donors and hundreds of volunteers who have selflessly given of themselves to enable the success of the KTB. This work was funded by the Susan G. Komen for the Cure (SEC, AVS, TM), The Breast Cancer Research Foundation (SEC, AVS, MC), the Catherine Peachey Fund (MR, SEC, AVS), the Department of Surgery Indiana University School of Medicine (IP, HAL, RJB, CAMS), and the Department of Medicine, Indiana University School of Medicine (BAH). MR was supported by a predoctoral fellowship from the NIH, NRSA 1 T32 CA 111198 Cancer Biology Training Program. Publication costs were defrayed by donations received at the Solheim Pink Bow Luncheon in Lake Geneva, WI.
PY - 2014/3/17
Y1 - 2014/3/17
N2 - Introduction: Our efforts to prevent and treat breast cancer are significantly impeded by a lack of knowledge of the biology and developmental genetics of the normal mammary gland. In order to provide the specimens that will facilitate such an understanding, The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center (KTB) was established. The KTB is, to our knowledge, the only biorepository in the world prospectively established to collect normal, healthy breast tissue from volunteer donors. As a first initiative toward a molecular understanding of the biology and developmental genetics of the normal mammary gland, the effect of the menstrual cycle and hormonal contraceptives on DNA expression in the normal breast epithelium was examined.Methods: Using normal breast tissue from 20 premenopausal donors to KTB, the changes in the mRNA of the normal breast epithelium as a function of phase of the menstrual cycle and hormonal contraception were assayed using next-generation whole transcriptome sequencing (RNA-Seq).Results: In total, 255 genes representing 1.4% of all genes were deemed to have statistically significant differential expression between the two phases of the menstrual cycle. The overwhelming majority (221; 87%) of the genes have higher expression during the luteal phase. These data provide important insights into the processes occurring during each phase of the menstrual cycle. There was only a single gene significantly differentially expressed when comparing the epithelium of women using hormonal contraception to those in the luteal phase.Conclusions: We have taken advantage of a unique research resource, the KTB, to complete the first-ever next-generation transcriptome sequencing of the epithelial compartment of 20 normal human breast specimens. This work has produced a comprehensive catalog of the differences in the expression of protein-coding genes as a function of the phase of the menstrual cycle. These data constitute the beginning of a reference data set of the normal mammary gland, which can be consulted for comparison with data developed from malignant specimens, or to mine the effects of the hormonal flux that occurs during the menstrual cycle.
AB - Introduction: Our efforts to prevent and treat breast cancer are significantly impeded by a lack of knowledge of the biology and developmental genetics of the normal mammary gland. In order to provide the specimens that will facilitate such an understanding, The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center (KTB) was established. The KTB is, to our knowledge, the only biorepository in the world prospectively established to collect normal, healthy breast tissue from volunteer donors. As a first initiative toward a molecular understanding of the biology and developmental genetics of the normal mammary gland, the effect of the menstrual cycle and hormonal contraceptives on DNA expression in the normal breast epithelium was examined.Methods: Using normal breast tissue from 20 premenopausal donors to KTB, the changes in the mRNA of the normal breast epithelium as a function of phase of the menstrual cycle and hormonal contraception were assayed using next-generation whole transcriptome sequencing (RNA-Seq).Results: In total, 255 genes representing 1.4% of all genes were deemed to have statistically significant differential expression between the two phases of the menstrual cycle. The overwhelming majority (221; 87%) of the genes have higher expression during the luteal phase. These data provide important insights into the processes occurring during each phase of the menstrual cycle. There was only a single gene significantly differentially expressed when comparing the epithelium of women using hormonal contraception to those in the luteal phase.Conclusions: We have taken advantage of a unique research resource, the KTB, to complete the first-ever next-generation transcriptome sequencing of the epithelial compartment of 20 normal human breast specimens. This work has produced a comprehensive catalog of the differences in the expression of protein-coding genes as a function of the phase of the menstrual cycle. These data constitute the beginning of a reference data set of the normal mammary gland, which can be consulted for comparison with data developed from malignant specimens, or to mine the effects of the hormonal flux that occurs during the menstrual cycle.
UR - http://www.scopus.com/inward/record.url?scp=84897992516&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84897992516&partnerID=8YFLogxK
U2 - 10.1186/bcr3627
DO - 10.1186/bcr3627
M3 - Article
C2 - 24636070
AN - SCOPUS:84897992516
SN - 1465-5411
VL - 16
JO - Breast Cancer Research
JF - Breast Cancer Research
IS - 2
M1 - R26
ER -