Abstract
Background Nitric oxide (NO) more effectively inhibits neointimal hyperplasia in type 2 diabetic versus nondiabetic and type 1 diabetic rodents. NO also decreases the ubiquitin-conjugating enzyme UbcH10, which is critical to cell-cycle regulation. This study seeks to determine whether UbcH10 levels in the vasculature of diabetic animal models account for the differential efficacy of NO at inhibiting neointimal hyperplasia. Materials and methods Vascular smooth muscle cells (VSMCs) harvested from nondiabetic lean Zucker (LZ) and type 2 diabetic Zucker diabetic fatty (ZDF) rats were exposed to high glucose (25 mM) and high insulin (24 nM) conditions to mimic the diabetic environment in vitro. LZ, streptozotocin-injected LZ (STZ, type 1 diabetic), and ZDF rats underwent carotid artery balloon injury (±10 mg PROLI/NO), and vessels were harvested at 3 and 14 d. UbcH10 was assessed by Western blotting and immunofluorescent staining. Results NO more effectively reduced UbcH10 levels in LZ versus ZDF VSMCs; however, addition of insulin and glucose dramatically potentiated the inhibitory effect of NO on UbcH10 in ZDF VSMCs. Three days after balloon injury, Western blotting showed NO decreased free UbcH10 and increased polyubiquitinated UbcH10 levels by 35% in both STZ and ZDF animals. Fourteen days after injury, immunofluorescent staining showed increased UbcH10 levels throughout the arterial wall in all animal models. NO decreased UbcH10 levels in LZ and STZ rats but not in ZDF. Conclusions These data suggest a disconnect between UbcH10 levels and neointimal hyperplasia formation in type 2 diabetic models and contribute valuable insight regarding differential efficacy of NO in these models.
Original language | English (US) |
---|---|
Pages (from-to) | 180-189 |
Number of pages | 10 |
Journal | Journal of Surgical Research |
Volume | 196 |
Issue number | 1 |
DOIs | |
State | Published - Jun 1 2015 |
Funding
This work was supported in part by funding from the National Institutes of Health ( T32HL094293 ), the Department of Veterans Affairs (VA Merit Review Grant I01 BX000409 ), Society of University Surgeons (Ethicon Resident Research Grant), the American Medical Association Foundation Seed Grant program, the University of Illinois (Eleanor B. Pillsbury Grant), and by the generosity of Mrs Hilda Rosenbloom and Mrs. Eleanor Baldwin.
Keywords
- Artery
- Diabetes
- Neointimal hyperplasia
- UbcH10
- Ubiquitin
ASJC Scopus subject areas
- Surgery