Node Distortion as a Tunable Mechanism for Negative Thermal Expansion in Metal-Organic Frameworks

Zhihengyu Chen, Gautam D. Stroscio, Jian Liu, Zhiyong Lu, Joseph T. Hupp, Laura Gagliardi*, Karena W. Chapman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Chemically functionalized series of metal-organic frameworks (MOFs), with subtle differences in local structure but divergent properties, provide a valuable opportunity to explore how local chemistry can be coupled to long-range structure and functionality. Using in situ synchrotron X-ray total scattering, with powder diffraction and pair distribution function (PDF) analysis, we investigate the temperature dependence of the local- and long-range structure of MOFs based on NU-1000, in which Zr6O8 nodes are coordinated by different capping ligands (H2O/OH, Cl- ions, formate, acetylacetonate, and hexafluoroacetylacetonate). We show that the local distortion of the Zr6 nodes depends on the lability of the ligand and contributes to a negative thermal expansion (NTE) of the extended framework. Using multivariate data analyses, involving non-negative matrix factorization (NMF), we demonstrate a new mechanism for NTE: progressive increase in the population of a smaller, distorted node state with increasing temperature leads to global contraction of the framework. The transformation between discrete node states is noncooperative and not ordered within the lattice, i.e., a solid solution of regular and distorted nodes. Density functional theory calculations show that removal of ligands from the node can lead to distortions consistent with the Zr···Zr distances observed in the experiment PDF data. Control of the node distortion imparted by the nonlinker ligand in turn controls the NTE behavior. These results reveal a mechanism to control the dynamic structure of MOFs based on local chemistry.

Original languageEnglish (US)
Pages (from-to)268-276
Number of pages9
JournalJournal of the American Chemical Society
Volume145
Issue number1
DOIs
StatePublished - Jan 11 2023

Funding

This work was initially supported as part of Inorganometallic Catalyst Design Center, an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (DE-SC0012702), and subsequently as part of the Catalyst Design for Decarbonization Center EFRC (DE-SC0023383). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357.

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Node Distortion as a Tunable Mechanism for Negative Thermal Expansion in Metal-Organic Frameworks'. Together they form a unique fingerprint.

Cite this