Noncentrosymmetry in mixed metal oxide-fluorides: Can we control it?

Rachelle Ann F Pinlac, Michael R. Marvel, Julien J M Lesage, Kenneth Poeppelmeier

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The rational design of crystal structures, in particular noncentrosymmetric materials, and how to differentiate polar, polar-chiral, and chiral structures, is an ongoing theme in crystal engineering. In KNaNbOF5, the combination of a second-order Jahn Teller active d0 transition metal oxyfluoride anionic unit and mixed K/Na cation coordination environments are shown to result in a polar structure (space group Pna21). The crystal structure analysis of the Na/K-O/F interactions reveals that the potassium cations form one of the two contacts to the under-bonded oxide ions. These interactions satisfy the expected bond valence sums and Pauling's second crystal rule (PSCR), leading to O/F ordering and acentric packing of the [NbOF 5]2- anionic unit.

Original languageEnglish (US)
Title of host publicationSolid-State Chemistry of Inorganic Materials VII
Pages18-29
Number of pages12
Volume1148
StatePublished - Dec 1 2008
Event2008 MRS Fall Meeting - Boston, MA, United States
Duration: Dec 1 2008Dec 5 2008

Other

Other2008 MRS Fall Meeting
Country/TerritoryUnited States
CityBoston, MA
Period12/1/0812/5/08

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanical Engineering
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Noncentrosymmetry in mixed metal oxide-fluorides: Can we control it?'. Together they form a unique fingerprint.

Cite this