Noninvasive Substitution of K+ Sites in Cyclodextrin Metal-Organic Frameworks by Li+ Ions

Hasmukh A. Patel, Timur Islamoglu, Zhichang Liu, Siva Krishna Mohan Nalluri, Avik Samanta, Ommid Anamimoghadam, Christos D. Malliakas, Omar K. Farha*, J. Fraser Stoddart

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

87 Scopus citations

Abstract

Co-crystallization of K+ and Li+ ions with γ-cyclodextrin (γ-CD) has been shown to substitute the K+ ion sites partially by Li+ ions, while retaining the structural integrity and accessible porosity of CD-MOF-1 (MOF, metal-organic framework). A series of experiments, in which the K+/Li+ ratio was varied with respect to that of γ-CD, have been conducted in order to achieve the highest possible proportion of Li+ ions in the framework. Attempts to obtain a CD-MOF containing only Li+ ions resulted in nonporous materials. The structural occupancy on the part of the Li+ ions in the new CD-MOF has been confirmed by single-crystal X-ray analysis by determining the vacancies of K+-ion sites and accounting for the cation/γ-CD ratio in CD-MOF-1. The proportion of Li+ ions has also been confirmed by elemental analysis, whereas powder X-ray diffraction has established the stability of the extended framework. This noninvasive synthetic approach to generating mixed-metal CD-MOFs is a promising method for obtaining porous framework unattainable de novo. Furthermore, the CO2 and H2 capture capacities of the Li+-ion-substituted CD-MOF have been shown to exceed the highest sorption capacities reported so far for CD-MOFs.

Original languageEnglish (US)
Pages (from-to)11020-11023
Number of pages4
JournalJournal of the American Chemical Society
Volume139
Issue number32
DOIs
StatePublished - Aug 16 2017

Funding

This research has been supported by the Joint Center of Excellence in Integrated Nano-Systems (JCIN) at King Abdulaziz City for Science and Technology (KACST) and Northwestern University (NU). O.K.F. acknowledges support from the U.S. Department of Energy, the Office of Science through grant DE-FG02-08ER15967. The authors thank both KACST and NU for their continued support of this research. The X-ray crystallographic investigations made use of the IMSERC facility at NU, which receives support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205), the State of Illinois, and the International Institute for Nanotechnology (IIN).

ASJC Scopus subject areas

  • General Chemistry
  • Biochemistry
  • Catalysis
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Noninvasive Substitution of K+ Sites in Cyclodextrin Metal-Organic Frameworks by Li+ Ions'. Together they form a unique fingerprint.

Cite this