Nonlinear mappings between discrete and simultaneous motions to decrease training burden of simultaneous pattern recognition myoelectric control

Kimberly A. Ingraham*, Lauren H. Smith, Ann M. Simon, Levi J. Hargrove

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Real-time simultaneous pattern recognition (PR) control of multiple degrees of freedom (DOF) has been demonstrated using a set of parallel linear discriminant analysis (LDA) classifiers trained with both discrete (1-DOF) and simultaneous (2-DOF) motion data. However, this training method presents a clinical challenge, requiring large amounts of data necessary to re-train the system. This study presents a parallel classifier training method that aims to reduce the training burden. Artificial neural networks (ANNs) were used to determine a nonlinear mapping between surface EMG features of 2-DOF motions and their 1-DOF motion components. The mapping was then used to transform experimentally collected features of 1-DOF motions into simulated features of 2-DOF motions. A set of parallel LDA classifiers were trained using the novel training method and two previously reported training methods. The training methods evaluated were (1) using experimentally collected 1-DOF data and ANN-simulated 2-DOF data, (2) using only experimentally collected 1-DOF data and (3) using experimentally collected 1- and 2-DOF data. Using the novel training method resulted in significantly lower classification error overall (p<0.01) and in predicting 2-DOF motions (p<0.01) compared to training with experimental 1-DOF data only. These findings demonstrate that using a set of ANNs to predict 2-DOF data from 1-DOF data can improve system performance when only discrete training data are available, thus reducing the training burden of simultaneous PR control.

Original languageEnglish (US)
Title of host publication2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1675-1678
Number of pages4
ISBN (Electronic)9781424492718
DOIs
StatePublished - Nov 4 2015
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: Aug 25 2015Aug 29 2015

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2015-November
ISSN (Print)1557-170X

Other

Other37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
CountryItaly
CityMilan
Period8/25/158/29/15

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Nonlinear mappings between discrete and simultaneous motions to decrease training burden of simultaneous pattern recognition myoelectric control'. Together they form a unique fingerprint.

Cite this