Norm varieties

Andrei Suslin*, Seva Joukhovitski

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

For given symbol in the nth Milnor K-group modulo prime l we construct a splitting variety with several properties. This variety is l-generic, meaning that it is generic with respect to splitting fields having no finite extensions of degree prime to l. The degree of its top Milnor class is not divisible by l2, and a certain motivic cohomology group of this variety consists of units. The existence of such varieties is needed in Voevodsky's part of the proof of the Bloch-Kato conjecture. In the course of the proof we also establish Markus Rost's degree formula.

Original languageEnglish (US)
Pages (from-to)245-276
Number of pages32
JournalJournal of Pure and Applied Algebra
Volume206
Issue number1-2 SPEC. ISS.
DOIs
StatePublished - Jul 2006

ASJC Scopus subject areas

  • Algebra and Number Theory

Fingerprint Dive into the research topics of 'Norm varieties'. Together they form a unique fingerprint.

Cite this