TY - JOUR
T1 - Novel estrogen receptor-α binding sites and estradiol target genes identified by chromatin immunoprecipitation cloning in breast cancer
AU - Lin, Zhihong
AU - Reierstad, Scott
AU - Huang, Chiang Ching
AU - Bulun, Serdar E.
PY - 2007/5/15
Y1 - 2007/5/15
N2 - Estrogen receptor-α (ERα) and its ligand estradiol play critical roles in breast cancer growth and are important therapeutic targets for this disease. Using chromatin immunoprecipitation (ChIP)-on-chip, ligand-bound ERα was recently found to function as a master transcriptional regulator via binding to many cis -acting sites genome-wide. Here, we used an alternative technology (ChIP cloning) and identified 94 ERα target loci in breast cancer cells. The ERα-binding sites contained both classic estrogen response elements and nonclassic binding sequences, showed specific transcriptional activity in reporter gene assay, and interacted with the key transcriptional regulators, including RNA polymerase II and nuclear receptor coactivator-3. The great majority of the binding sites were located in either introns or far distant to coding regions of genes. Forty-three percent of the genes that lie within 50 kb to an ERα-binding site were regulated by estradiol. Most of these genes are novel estradiol targets encoding receptors, signaling messengers, and ion binders/transporters. mRNA profiling in estradiol-treated breast cancer cell lines and tissues revealed that these genes are highly ERα responsive both in vitro and in vivo. Among estradiol-induced genes, Wnt11 was found to increase cell survival by significantly reducing apoptosis in breast cancer cells. Taken together, we showed novel genomic binding sites of ERα that regulate a novel set of genes in response to estradiol in breast cancer. Our findings suggest that at least a subset of these genes, including Wnt11, may play important in vivo and in vitro biological roles in breast cancer.
AB - Estrogen receptor-α (ERα) and its ligand estradiol play critical roles in breast cancer growth and are important therapeutic targets for this disease. Using chromatin immunoprecipitation (ChIP)-on-chip, ligand-bound ERα was recently found to function as a master transcriptional regulator via binding to many cis -acting sites genome-wide. Here, we used an alternative technology (ChIP cloning) and identified 94 ERα target loci in breast cancer cells. The ERα-binding sites contained both classic estrogen response elements and nonclassic binding sequences, showed specific transcriptional activity in reporter gene assay, and interacted with the key transcriptional regulators, including RNA polymerase II and nuclear receptor coactivator-3. The great majority of the binding sites were located in either introns or far distant to coding regions of genes. Forty-three percent of the genes that lie within 50 kb to an ERα-binding site were regulated by estradiol. Most of these genes are novel estradiol targets encoding receptors, signaling messengers, and ion binders/transporters. mRNA profiling in estradiol-treated breast cancer cell lines and tissues revealed that these genes are highly ERα responsive both in vitro and in vivo. Among estradiol-induced genes, Wnt11 was found to increase cell survival by significantly reducing apoptosis in breast cancer cells. Taken together, we showed novel genomic binding sites of ERα that regulate a novel set of genes in response to estradiol in breast cancer. Our findings suggest that at least a subset of these genes, including Wnt11, may play important in vivo and in vitro biological roles in breast cancer.
UR - http://www.scopus.com/inward/record.url?scp=34250363896&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34250363896&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-06-3696
DO - 10.1158/0008-5472.CAN-06-3696
M3 - Article
C2 - 17510434
AN - SCOPUS:34250363896
SN - 0008-5472
VL - 67
SP - 5017
EP - 5024
JO - Cancer Research
JF - Cancer Research
IS - 10
ER -