Novel Size-Based High-Density Lipoprotein Subspecies and Incident Vascular Events

Austin Deets, Parag H. Joshi, Alvin Chandra, Kavisha Singh, Amit Khera, Salim S. Virani, Christie M. Ballantyne, James D. Otvos, Robin P.F. Dullaart, Eke G. Gruppen, Margery A. Connelly, Colby Ayers, Ann Marie Navar, Ambarish Pandey, John T. Wilkins, Anand Rohatgi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

BACKGROUND: High-density lipoprotein (HDL) particle concentration likely outperforms HDL cholesterol in predicting atherosclerotic cardiovascular events. Whether size-based HDL subspecies explain the atheroprotective associations of HDL particle concentration remains unknown. Our objective was to assess whether levels of specific size-based HDL subspecies associate with atherosclerotic cardiovascular disease in a multiethnic pooled cohort and improve risk prediction beyond traditional atherosclerotic cardiovascular disease risk factors. METHODS AND RESULTS: Seven HDL size-based subspecies were quantified by nuclear magnetic resonance (LP4 algorithm; H1=smallest; H7=largest) among participants without prior atherosclerotic cardiovascular disease in ARIC (Atherosclerosis Risk in Communities), MESA (Multi-Ethnic Study of Atherosclerosis), PREVEND (Prevention of Renal and Vascular Endstage Disease), and DHS (Dallas Heart Study) cohorts (n=15 371 people). Multivariable Cox proportional hazards models were used to evaluate the association between HDL subspecies and incident myocardial infarction (MI) or ischemic stroke at follow-up (average 8–10 years) adjusting for HDL cholesterol and risk factors. Improvement in risk prediction was assessed via discrimination and reclassification analysis. Within the pooled cohort (median age 57 years; female 54%; Black 22%) higher H1 (small) and H4 (medium) concentrations were inversely associated with incident MI (hazard ratio [HR]/SD, H1 0.88 [95% CI, 0.81–0.94]; H4 0.89 [95% CI, 0.82–0.97]). H4 but not H1 improved risk prediction indices for incident MI. Increasing H2 and H4 were inversely associated with improved risk prediction indices for composite end point of stroke, MI, and cardiovascular death (HR/SD, H2 0.94 [95% CI, 0.88–0.99]; H4 0.91 [95% CI, 0.85–0.98]). Levels of the large subspecies (H6 and H7) were not associated with any vascular end point. CONCLUSIONS: Two of 7 HDL size-based subspecies modestly improved risk prediction for MI and composite vascular end points in a large multiethnic pooled cohort. These findings support assessment of precise HDL subspecies for future studies regarding clinical utility.

Original languageEnglish (US)
Article numbere031160
JournalJournal of the American Heart Association
Volume12
Issue number21
DOIs
StatePublished - Nov 7 2023

Funding

M. A. Connelly is employed by Labcorp and is a stock shareholder of LabCorp. C. Ayers has funding from the National Institutes of Health. A. Rohatgi has disclosures for CSL Limited, Raydel, and HDL Diagnostics as a consultant and for CSL and Quest for research grants. Dr Joshi has disclosures related to Honoraria for Regeneron and Bayer, as well as Research Grants for American Heart Association, Novo Nordisk, GlaxoSmithKline, Sanofi/Regeneron, AstraZeneca, and NASA and is a stock shareholder for G3 Therapeutics. Dr Virani has disclosures related to honoraria for American College of Cardiology (associate editor for Innovations, ACC.org). Dr Ballantyne has disclosures related to Abbott Diagnostics, Genentech, Amgen, Arrowhead, Astra Zeneca, Esperion, Gilead, Matinas BioPharma Inc, Novartis, Novo Nordisk, Regeneron, Sanofi-Synthelabo, Illumina, Pfizer, Merck, Althera, Roche Diagnostic, Amarin, Denka Seiken, and New Amsterdam, as well as research grants with Abbott Diagnostic, Akcea, Amgen, Esperion, Novartis, Regeneron, Roche Diagnostic, Ionis, and Arrowhead. J. D. Otvos is employed by Labcorp. Dr Wilkins has disclosures related to 3M and National Heart, Lung, and Blood Institute grant support, as well as disclosures related to research support from the National Institute on Aging GEMSSTAR Grant (1R03AG067960–01), and the National Institute on Minority Health and Disparities (R01MD017529), Applied Therapeutics This work was supported by National Heart, Lung, and Blood Institute and National Institutes of Health; K24HL146838 and R01HL136724.

Keywords

  • HDL
  • HDL size
  • HDL-C
  • MI
  • multiethnic
  • stroke

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'Novel Size-Based High-Density Lipoprotein Subspecies and Incident Vascular Events'. Together they form a unique fingerprint.

Cite this