Novel synthetic material mimicking mechanisms from natural nacre

Allison Juster, Felix Latourte, Horacio Dante Espinosa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The biomimetics field has become very popular as Mother Nature creates materials with superior strength and toughness out of relatively weak material constituents. This concept is attractive because current synthetic materials have yet to achieve this level of performance from the same weak material constituents. Nacre, from Red Abalone shells, is among the natural materials exhibiting outstanding toughness, while being comprised of a brick and mortar structure of 95% brittle ceramic tablets and 5% soft organic biopolymer mortar. During loading, that tablets slide relative to each other. This generates progressive interlocking which constitutes nacre's primary toughening mechanism [1, 2]. We have translated this concept of tablet sliding and interlocking to create a novel composite material. Fabrication of the material will be discussed as well as design parameters. Results from tensile tests will be presented as well as comparison of the synthetic material to natural nacre. Implications to the synthetic materials community will be presented.

Original languageEnglish (US)
Title of host publicationSociety for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010
Pages1212-1213
Number of pages2
StatePublished - Nov 9 2010
EventSEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010 - Indianapolis, IN, United States
Duration: Jun 7 2010Jun 10 2010

Publication series

NameSociety for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010
Volume2

Other

OtherSEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010
Country/TerritoryUnited States
CityIndianapolis, IN
Period6/7/106/10/10

ASJC Scopus subject areas

  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Novel synthetic material mimicking mechanisms from natural nacre'. Together they form a unique fingerprint.

Cite this