TY - JOUR
T1 - Nucleocytoplasmic shuttling of polypyrimidine tract-binding protein is uncoupled from RNA export
AU - Kamath, R. V.
AU - Leary, D. J.
AU - Huang, S.
PY - 2001
Y1 - 2001
N2 - Polypyrimidine tract binding protein, PTB/hnRNP I, is involved in pre-mRNA processing in the nucleus and RNA localization and translation in the cytoplasm. In this report, we demonstrate that PTB shuttles between the nucleus and cytoplasm in an energy-dependent manner. Deletion mutagenesis demonstrated that a minimum of the N terminus and RNA recognition motifs (RRMs) 1 and 2 are necessary for nucleocytoplasmic shuttling. Deletion of RRM3 and 4, domains that are primarily responsible for RNA binding, accelerated the nucleocytoplasmic shuttling of PTB. Inhibition of transcription directed by either RNA polymerase II alone or all RNA polymerases yielded similar results. In contrast, selective inhibition of RNA polymerase I did not influence the shuttling kinetics of PTB. Furthermore, the intranuclear mobility of GFP-PTB, as measured by fluorescence recovery after photobleaching analyses, increased significantly in transcriptionally inactive cells compared with transcriptionally active cells. These observations demonstrate that nuclear RNA transcription and export are not necessary for the shuttling of PTB. In addition, binding to nascent RNAs transcribed by RNA polymerase II and/or III retards both the nuclear export and nucleoplasmic movement of PTB. The uncoupling of PTB shuttling and RNA export suggests that the nucleocytoplasmic shuttling of PTB may also play a regulatory role for its functions in the nucleus and cytoplasm.
AB - Polypyrimidine tract binding protein, PTB/hnRNP I, is involved in pre-mRNA processing in the nucleus and RNA localization and translation in the cytoplasm. In this report, we demonstrate that PTB shuttles between the nucleus and cytoplasm in an energy-dependent manner. Deletion mutagenesis demonstrated that a minimum of the N terminus and RNA recognition motifs (RRMs) 1 and 2 are necessary for nucleocytoplasmic shuttling. Deletion of RRM3 and 4, domains that are primarily responsible for RNA binding, accelerated the nucleocytoplasmic shuttling of PTB. Inhibition of transcription directed by either RNA polymerase II alone or all RNA polymerases yielded similar results. In contrast, selective inhibition of RNA polymerase I did not influence the shuttling kinetics of PTB. Furthermore, the intranuclear mobility of GFP-PTB, as measured by fluorescence recovery after photobleaching analyses, increased significantly in transcriptionally inactive cells compared with transcriptionally active cells. These observations demonstrate that nuclear RNA transcription and export are not necessary for the shuttling of PTB. In addition, binding to nascent RNAs transcribed by RNA polymerase II and/or III retards both the nuclear export and nucleoplasmic movement of PTB. The uncoupling of PTB shuttling and RNA export suggests that the nucleocytoplasmic shuttling of PTB may also play a regulatory role for its functions in the nucleus and cytoplasm.
UR - http://www.scopus.com/inward/record.url?scp=0035658308&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035658308&partnerID=8YFLogxK
U2 - 10.1091/mbc.12.12.3808
DO - 10.1091/mbc.12.12.3808
M3 - Article
C2 - 11739782
AN - SCOPUS:0035658308
SN - 1059-1524
VL - 12
SP - 3808
EP - 3820
JO - Molecular Biology of the Cell
JF - Molecular Biology of the Cell
IS - 12
ER -