Numerical calculation of diffraction coefficients of generic conducting and dielectric wedges using FDTD

Glafkos Stratis*, Veeraraghavan Anantha, Alien Taflove

*Corresponding author for this work

Research output: Contribution to journalArticle

38 Scopus citations

Abstract

Classical theories such as the uniform geometrical theory of diffraction (UTD) utilize analytical expressions for diffraction coefficient for canonical problems such as the infinite perfectly conducting wedge [1]. In this paper, we present a numerical approach to this problem using the finite-difference timedomain (FDTD) method. We present results for the diffraction coefficient of the two-dimensional (2-D) infinite perfect electrical conductor (PEC) wedge, the 2-D infinite lossless dielectric wedge, and the 2-D infinite lossy dielectric wedge for incident TM and TE polarization and a 90° wedge angle. We compare our FDTD results in the far-field region for the infinite PEC wedge to the well-known analytical solutions obtained using UTD. There is very good agreement between the FDTD and UTD results. The power of this approach using FDTD goes well beyond the simple problems dealt with in this paper. It can, in principle, be extended to calculate diffraction coefficients for a variety of shape and material discontinuities, even in three dimensions.

Original languageEnglish (US)
Pages (from-to)1525-1529
Number of pages5
JournalIEEE Transactions on Antennas and Propagation
Volume45
Issue number10
DOIs
StatePublished - Dec 1 1997

Keywords

  • Electromagnetic scattering
  • Fdtd methods

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Numerical calculation of diffraction coefficients of generic conducting and dielectric wedges using FDTD'. Together they form a unique fingerprint.

Cite this