Numerical Simulation of a Nanoparticle Focusing Lens in a Microfluidic Channel by Using Immersed Finite Element Method

Tae Rin Lee, Yoon Suk Chang, Jae Boong Choi, Wing Kam Liu, Young Jin Kim*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Lap-on-a-chip system is one of challenging parts in nano and bio engineering fields, for instance, microfluidic channels on the chip are useful for selecting a target particle and mass transferring of boiomolecules in fluid. However, since experimental approach is highly expensive both in time and cost, alternative reliable methods are required to conceive optimized channels. The purpose of this research is to simulate a nanoparticle focusing lens in a microfluidic channel from nanoparticle control point of view. A promising immersed finite element method is expanded to estimate the path of randomly moving nanoparticles through a focusing lens. The channel flow is assumed as incompressible viscous fluid and Brownian motion effects as well as initial position of particle are quantitatively examined. As a representative result, while the nanoparticles with/without Brownian motion were focused along the center of the channel, the concentration factor representing focusing efficiency was calculated. Therefore, it is expected that the newly proposed numerical method considering Brownian motion will be efficiently applicable to design the microfluidic channel containing various particles, molecules and so forth in the near future.

Original languageEnglish (US)
Pages (from-to)7407-7411
Number of pages5
JournalJournal of Nanoscience and Nanotechnology
Volume9
Issue number12
DOIs
StatePublished - Dec 2009

Keywords

  • Brownian motion
  • Element method
  • Immersed finite
  • Microfluidic channel
  • Nanoparticle focusing lens

ASJC Scopus subject areas

  • Bioengineering
  • General Chemistry
  • Biomedical Engineering
  • General Materials Science
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Numerical Simulation of a Nanoparticle Focusing Lens in a Microfluidic Channel by Using Immersed Finite Element Method'. Together they form a unique fingerprint.

Cite this