TY - GEN
T1 - Numerical simulations of localized deformation in a high-porosity carbonate rock
AU - Das, A.
AU - Buscarnera, Giuseppe
PY - 2014/1/1
Y1 - 2014/1/1
N2 - Strain localization in the form of compactive shear bands or compaction bands is often observed in high porosity rocks such as sandstones or limestones. In the present study, we theoretically investigate the possibility of strain localization in a high-porosity carbonate rock (calcarenite) by means of a continuum mechanics approach. A critical state elasto-plastic constitutive model has been employed for this purpose. We examine the constitutive and structural response by solving boundary value problems (BVPs) for calcarenite specimens subjected to axisymmetric loading conditions. In order to perform the numerical simulation in the post localization regime, the model is enhanced with a rate dependent regularization scheme. The results demonstrate that material heterogeneity, kinematic constraints and boundary effects govern the formation of various modes of localized deformation in the transitional regime between brittle fracture and ductile faulting. Indeed, the predicted macroscopic response is found to be in good agreement with observations available in the literature.
AB - Strain localization in the form of compactive shear bands or compaction bands is often observed in high porosity rocks such as sandstones or limestones. In the present study, we theoretically investigate the possibility of strain localization in a high-porosity carbonate rock (calcarenite) by means of a continuum mechanics approach. A critical state elasto-plastic constitutive model has been employed for this purpose. We examine the constitutive and structural response by solving boundary value problems (BVPs) for calcarenite specimens subjected to axisymmetric loading conditions. In order to perform the numerical simulation in the post localization regime, the model is enhanced with a rate dependent regularization scheme. The results demonstrate that material heterogeneity, kinematic constraints and boundary effects govern the formation of various modes of localized deformation in the transitional regime between brittle fracture and ductile faulting. Indeed, the predicted macroscopic response is found to be in good agreement with observations available in the literature.
UR - http://www.scopus.com/inward/record.url?scp=84927136562&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84927136562&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84927136562
T3 - 48th US Rock Mechanics / Geomechanics Symposium 2014
SP - 200
EP - 207
BT - 48th US Rock Mechanics / Geomechanics Symposium 2014
A2 - Sterling, Ray
A2 - Detournay, Emmanuel
A2 - Pettitt, Will
A2 - Labuz, Joseph F.
A2 - Petersen, Lee
PB - American Rock Mechanics Association (ARMA)
T2 - 48th US Rock Mechanics / Geomechanics Symposium 2014: Rock Mechanics Across Length and Time Scales
Y2 - 1 June 2014 through 4 June 2014
ER -