Abstract
The growing demand for ubiquitous data collection has driven the development of sensing technologies with local data processing. As a result, solution-processed semiconductors are widely employed due to their compatibility with low-cost additive manufacturing on a wide range of substrates. However, to fully realize their potential in sensing applications, high-performance scalable analog amplifiers must be realized. Here, ohmic-contact-gated transistors (OCGTs) based on solution-processed semiconducting single-walled carbon nanotubes are introduced to address this unmet need. This new device concept enables output current saturation in the short-channel limit without compromising output current drive. The resulting OCGTs are used in common-source amplifiers to achieve the highest width-normalized output current (≈30 µA µm–1) and length-scaled signal gain (≈230 µm–1) to date for solution-processed semiconductors. The utility of these amplifiers for emerging sensing technologies is demonstrated by the amplification of complex millivolt-scale analog biological signals including the outputs of electromyography, photoplethysmogram, and accelerometer sensors. Since the OCGT design is compatible with other solution-processed semiconducting materials, this work establishes a general route to high-performance, solution-processed analog electronics.
Original language | English (US) |
---|---|
Article number | 2100994 |
Journal | Advanced Materials |
Volume | 33 |
Issue number | 34 |
DOIs | |
State | Published - Aug 26 2021 |
Keywords
- biological sensors
- field-effect transistors
- self-alignment
- short channels
- solution processing
ASJC Scopus subject areas
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering