On-chip integration of thermoelectric energy harvesting in 3D ICs

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

We present a full system integration of a thermoelectric energy harvesting system as an on-chip component into a 3D IC. Our system incorporates a lithographically patterned bi-metallic thin-film thermocouple network with a switched capacitor power converter and a charge buffer capacitor to harvest thermal energy produced by temperature gradients in typical 3D IC structures. Through heat transfer and transistor-level circuit simulations we demonstrate the energy harvesting potential of our system to power a low energy circuit component. Our proposed thin film based harvester does not require package re-design, since it is integrated on-chip using low cost CMOS compatible material. We evaluated integration of our proposed system into a 3D stacking of processor cores and DRAM memory. Even when operating at a conservative thermal bound of 84°C sufficient energy is harvested to continuously sustain a low-power adder for 29,640 cycles of single bit additions or 463 cycles of 64-bit additions with 12usec charging delay. Effectively we can run the adder continuously with less than 0.80% delay between bursts of operations.

Original languageEnglish (US)
Title of host publication2015 IEEE International Symposium on Circuits and Systems, ISCAS 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1078-1081
Number of pages4
ISBN (Electronic)9781479983919
DOIs
StatePublished - Jul 27 2015
EventIEEE International Symposium on Circuits and Systems, ISCAS 2015 - Lisbon, Portugal
Duration: May 24 2015May 27 2015

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
Volume2015-July
ISSN (Print)0271-4310

Other

OtherIEEE International Symposium on Circuits and Systems, ISCAS 2015
CountryPortugal
CityLisbon
Period5/24/155/27/15

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'On-chip integration of thermoelectric energy harvesting in 3D ICs'. Together they form a unique fingerprint.

Cite this