On hardness of pricing items for single-minded bidders

Rohit Khandekar*, Tracy Kimbrel, Konstantin Makarychev, Maxim Sviridenko

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations

Abstract

We consider the following item pricing problem which has received much attention recently. A seller has an infinite numbers of copies of n items. There are m buyers, each with a budget and an intention to buy a fixed subset of items. Given prices on the items, each buyer buys his subset of items, at the given prices, provided the total price of the subset is at most his budget. The objective of the seller is to determine the prices such that her total profit is maximized. In this paper, we focus on the case where the buyers are interested in subsets of size at most two. This special case is known to be APX-hard (Guruswami et al [1]). The best known approximation algorithm, by Balcan and Blum, gives a 4-approximation [2]. We show that there is indeed a gap of 4 for the combinatorial upper bound used in their analysis. We further show that a natural linear programming relaxation of this problem has an integrality gap of 4, even in this special case. Then we prove that the problem is NP-hard to approximate within a factor of 2 assuming the Unique Games Conjecture; and it is unconditionally NP-hard to approximate within a factor 17/16. Finally, we extend the APX-hardness of the problem to the special case in which the graph formed by items as vertices and buyers as edges is bipartite. We hope that our techniques will be helpful for obtaining stronger hardness of approximation bounds for this problem.

Original languageEnglish (US)
Title of host publicationApproximation, Randomization, and Combinatorial Optimization
Subtitle of host publicationAlgorithms and Techniques - 12th International Workshop, APPROX 2009 and 13th International Workshop, RANDOM 2009, Proceedings
Pages202-216
Number of pages15
DOIs
StatePublished - Nov 6 2009
Event12th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2009 and 13th International Workshop on Randomization and Computation, RANDOM 2009 - Berkeley, CA, United States
Duration: Aug 21 2009Aug 23 2009

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume5687 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other12th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2009 and 13th International Workshop on Randomization and Computation, RANDOM 2009
CountryUnited States
CityBerkeley, CA
Period8/21/098/23/09

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'On hardness of pricing items for single-minded bidders'. Together they form a unique fingerprint.

Cite this