On nonadiabatic condensed phase combustion

Hans G. Kaper, Gary K. Leaf, Stephen B. Margolis, Bernard J. Matkowsky

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


We analyze the effects of melting and volumetric heat losses on the propagation of a reaction front in condensed phase combustion. Considering both homogeneous and heterogeneous models for the reaction rate, we calculate the propagation velocity for steady, planar burning as a function of the parameters in the problem. In particular, we show that this quantity is a multi-valued function of the heat loss parameter. We interpret the critical value of this parameter at which the propagation velocity has a vertical tangent, and which varies with the melting parameter, as an extinction limit beyond which a steady, planar combustion wave cannot sustain itself. We also present a model for nonsteady, nonplanar burning and consider the linear stability of the steady, planar solution. As in the adiabatic case, this basic solution is unstable to pulsating disturbances for sufficiently large values of a modified activation energy parameter. We show, in agreement with experimental results, that the effects of heat loss, as well as melting, are destabilizing in the sense that the neutral stability boundary becomes more accessible when these phenomena are taken into account.

Original languageEnglish (US)
Pages (from-to)289-314
Number of pages26
JournalCombustion science and technology
Issue number4-6
StatePublished - Jul 1 1987

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Physics and Astronomy(all)


Dive into the research topics of 'On nonadiabatic condensed phase combustion'. Together they form a unique fingerprint.

Cite this