On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase

Zhi Yong Yang, Nimesh Khadka, Dmitriy Lukoyanov, Brian M. Hoffman*, Dennis R. Dean, Lance C. Seefeldt

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

58 Scopus citations


Nitrogenase is activated for N2 reduction by the accumulation of four electrons/protons on its active site FeMo-cofactor, yielding a state, designated as E4, which contains two iron-bridging hydrides [Fe-H-Fe]. A central puzzle of nitrogenase function is an apparently obligatory formation of one H2 per N2 reduced,which would "waste" two reducing equivalents and four ATP. We recently presented a draft mechanism for nitrogenase that provides an explanation for obligatory H2 production. In this model, H2 is produced by reductive elimination of the two bridging hydrides of E4 during N2 binding. This process releases H2, yielding N2 bound to FeMocofactor that is doubly reduced relative to the resting redox level, and thereby is activated to promptly generate bound diazene (HN=NH). This mechanism predicts that during turnover under D2/N2, the reverse reaction of D2 with the N2-bound product of reductive elimination would generate dideutero-E4 [E4(2D)], which can relax with loss of HD to the state designated E2, with a single deuteride bridge [E2(D)]. Neither of these deuterated intermediate states could otherwise form in H2O buffer. The predicted E 2(D) and E4(2D) states are here established by intercepting them with the nonphysiological substrate acetylene (C2H2) to generate deuterated ethylenes (C2H3D and C 2H2D2). The demonstration that gaseous H 2/D2 can reduce a substrate other than H+ with N 2 as a cocatalyst confirms the essential mechanistic role for H 2 formation, and hence a limiting stoichiometry for biological nitrogen fixation of eight electrons/protons, and provides direct experimental support for the reductive elimination mechanism.

Original languageEnglish (US)
Pages (from-to)16327-16332
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number41
StatePublished - Oct 8 2013


  • Acetylene reduction
  • Metalloenzyme

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'On reversible H<sub>2</sub> loss upon N<sub>2</sub> binding to FeMo-cofactor of nitrogenase'. Together they form a unique fingerprint.

Cite this