On the benefits of surrogate Lagrangians in optimal control and planning algorithms

Gerardo De La Torre, Todd D. Murphey

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

This paper explores the relationship between numerical integrators and optimal control algorithms. Specifically, the performance of the differential dynamical programming (DDP) algorithm is examined when a variational integrator and a newly proposed surrogate variational integrator are used to propagate and linearize system dynamics. Surrogate variational integrators, derived from backward error analysis, achieve higher levels of accuracy while maintaining the same integration complexity as nominal variational integrators. The increase in the integration accuracy is shown to have a large effect on the performance of the DDP algorithm. In particular, significantly more optimized inputs are computed when the surrogate variational integrator is utilized.

Original languageEnglish (US)
Title of host publication2016 IEEE 55th Conference on Decision and Control, CDC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7384-7391
Number of pages8
ISBN (Electronic)9781509018376
DOIs
StatePublished - Dec 27 2016
Event55th IEEE Conference on Decision and Control, CDC 2016 - Las Vegas, United States
Duration: Dec 12 2016Dec 14 2016

Publication series

Name2016 IEEE 55th Conference on Decision and Control, CDC 2016

Other

Other55th IEEE Conference on Decision and Control, CDC 2016
CountryUnited States
CityLas Vegas
Period12/12/1612/14/16

ASJC Scopus subject areas

  • Artificial Intelligence
  • Decision Sciences (miscellaneous)
  • Control and Optimization

Fingerprint Dive into the research topics of 'On the benefits of surrogate Lagrangians in optimal control and planning algorithms'. Together they form a unique fingerprint.

Cite this