TY - JOUR
T1 - On the bilinear Hilbert transform along two polynomials
AU - Dong, Dong
N1 - Publisher Copyright:
©2019 American Mathematical Society
PY - 2019
Y1 - 2019
N2 - We prove that the bilinear Hilbert transform along two polynomials BP,Q(f, g)(x) = ∫ R f(x − P(t))g(x − Q(t)) dt t is bounded from Lp × Lq to Lr for a large range of (p, q, r), as long as the polynomials P and Q have distinct leading and trailing degrees. The same boundedness property holds for the corresponding bilinear maximal function MP,Q(f, g)(x) = sup ε> 0 2 1 ε ∫ − ε ε |f(x − P(t))g(x − Q(t))|dt.
AB - We prove that the bilinear Hilbert transform along two polynomials BP,Q(f, g)(x) = ∫ R f(x − P(t))g(x − Q(t)) dt t is bounded from Lp × Lq to Lr for a large range of (p, q, r), as long as the polynomials P and Q have distinct leading and trailing degrees. The same boundedness property holds for the corresponding bilinear maximal function MP,Q(f, g)(x) = sup ε> 0 2 1 ε ∫ − ε ε |f(x − P(t))g(x − Q(t))|dt.
UR - http://www.scopus.com/inward/record.url?scp=85073382915&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073382915&partnerID=8YFLogxK
U2 - 10.1090/proc/14518
DO - 10.1090/proc/14518
M3 - Article
AN - SCOPUS:85073382915
SN - 0002-9939
VL - 147
SP - 4245
EP - 4258
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
IS - 10
ER -