On the efficiency of organic light emitting diodes

Alexander L. Burin*, Mark A. Ratner

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

We have studied the quantum efficiency of multilayer organic light emitting diodes (OLEDs). Attention is focused on the recombination efficiency and exciton quenching, controlling the performance of highly efficient OLEDs having Alq(3) (Al(III) 8-hydroxyquinoline) as the emissive layer. The kinetics model of Ref. [1] is extended to account for the image charge effect on the injection and the narrow bandwidths of carriers. An analytical criterion for maximum recombination efficiency at low voltages is found. The analysis of current voltage dependence and quantum efficiency is performed for Al/LiF/Alq(3)/TPD/ITO devices with or without an ultrathin dielectric layer LiF, taking into account the exciton quenching controlled by the boundary Al-Alq(3). We get a reasonable fit for the experimental data and discuss the optimum modifications required to enhance the device performance.

Original languageEnglish (US)
Pages (from-to)142-143
Number of pages2
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume3749
StatePublished - Jan 1 1999
EventProceedings of the 1999 18th Congress of the International Commission for Optics (ICO XVIII): Optics for the Next Millennium - San Francisco, CA, USA
Duration: Aug 2 1999Aug 6 1999

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'On the efficiency of organic light emitting diodes'. Together they form a unique fingerprint.

Cite this