On the finite opening of intersonic shear cracks

B. Chen, Y. Huang*, H. Gao, W. Yang

*Corresponding author for this work

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Recent molecular dynamics simulations of dynamic crack propagation have shown that there is a finite crack opening for a shear crack propagating at a sub-Rayleigh speed, but the crack opening becomes significantly smaller once the crack tip velocity exceeds the shear wave speed. To understand this difference between the crack opening for sub-Rayleigh and intersonic shear cracks, we develop in this paper a finite deformation continuum theory incorporating the linear harmonic potential to describe the deformation of a crack in a solid with triangular lattice structure. Using the asymptotic method developed by Knowles [Eng. Fract. Mech. 15 (1981) 469], we show that even after the geometric nonlinearity of finite deformation is accounted for, the intersonic shear cracks have a vanishing crack opening displacement.

Original languageEnglish (US)
Pages (from-to)2293-2306
Number of pages14
JournalInternational Journal of Solids and Structures
Volume41
Issue number9-10
DOIs
StatePublished - May 1 2004

Fingerprint

Crack
cracks
shear
Cracks
Finite Deformation
Rayleigh
asymptotic methods
crack opening displacement
Geometric Nonlinearity
crack tips
Harmonic Potential
crack propagation
Lattice Structure
Shear waves
Triangular Lattice
Wave Speed
Asymptotic Methods
Crack Propagation
Crack Tip
S waves

Keywords

  • Crack opening
  • Intersonic crack
  • Linear harmonic potential

ASJC Scopus subject areas

  • Modeling and Simulation
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Applied Mathematics

Cite this

Chen, B. ; Huang, Y. ; Gao, H. ; Yang, W. / On the finite opening of intersonic shear cracks. In: International Journal of Solids and Structures. 2004 ; Vol. 41, No. 9-10. pp. 2293-2306.
@article{e717bb52fc264e6c94d34d46adb19f79,
title = "On the finite opening of intersonic shear cracks",
abstract = "Recent molecular dynamics simulations of dynamic crack propagation have shown that there is a finite crack opening for a shear crack propagating at a sub-Rayleigh speed, but the crack opening becomes significantly smaller once the crack tip velocity exceeds the shear wave speed. To understand this difference between the crack opening for sub-Rayleigh and intersonic shear cracks, we develop in this paper a finite deformation continuum theory incorporating the linear harmonic potential to describe the deformation of a crack in a solid with triangular lattice structure. Using the asymptotic method developed by Knowles [Eng. Fract. Mech. 15 (1981) 469], we show that even after the geometric nonlinearity of finite deformation is accounted for, the intersonic shear cracks have a vanishing crack opening displacement.",
keywords = "Crack opening, Intersonic crack, Linear harmonic potential",
author = "B. Chen and Y. Huang and H. Gao and W. Yang",
year = "2004",
month = "5",
day = "1",
doi = "10.1016/j.ijsolstr.2003.12.014",
language = "English (US)",
volume = "41",
pages = "2293--2306",
journal = "International Journal of Solids and Structures",
issn = "0020-7683",
publisher = "Elsevier Limited",
number = "9-10",

}

On the finite opening of intersonic shear cracks. / Chen, B.; Huang, Y.; Gao, H.; Yang, W.

In: International Journal of Solids and Structures, Vol. 41, No. 9-10, 01.05.2004, p. 2293-2306.

Research output: Contribution to journalArticle

TY - JOUR

T1 - On the finite opening of intersonic shear cracks

AU - Chen, B.

AU - Huang, Y.

AU - Gao, H.

AU - Yang, W.

PY - 2004/5/1

Y1 - 2004/5/1

N2 - Recent molecular dynamics simulations of dynamic crack propagation have shown that there is a finite crack opening for a shear crack propagating at a sub-Rayleigh speed, but the crack opening becomes significantly smaller once the crack tip velocity exceeds the shear wave speed. To understand this difference between the crack opening for sub-Rayleigh and intersonic shear cracks, we develop in this paper a finite deformation continuum theory incorporating the linear harmonic potential to describe the deformation of a crack in a solid with triangular lattice structure. Using the asymptotic method developed by Knowles [Eng. Fract. Mech. 15 (1981) 469], we show that even after the geometric nonlinearity of finite deformation is accounted for, the intersonic shear cracks have a vanishing crack opening displacement.

AB - Recent molecular dynamics simulations of dynamic crack propagation have shown that there is a finite crack opening for a shear crack propagating at a sub-Rayleigh speed, but the crack opening becomes significantly smaller once the crack tip velocity exceeds the shear wave speed. To understand this difference between the crack opening for sub-Rayleigh and intersonic shear cracks, we develop in this paper a finite deformation continuum theory incorporating the linear harmonic potential to describe the deformation of a crack in a solid with triangular lattice structure. Using the asymptotic method developed by Knowles [Eng. Fract. Mech. 15 (1981) 469], we show that even after the geometric nonlinearity of finite deformation is accounted for, the intersonic shear cracks have a vanishing crack opening displacement.

KW - Crack opening

KW - Intersonic crack

KW - Linear harmonic potential

UR - http://www.scopus.com/inward/record.url?scp=1842431733&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=1842431733&partnerID=8YFLogxK

U2 - 10.1016/j.ijsolstr.2003.12.014

DO - 10.1016/j.ijsolstr.2003.12.014

M3 - Article

VL - 41

SP - 2293

EP - 2306

JO - International Journal of Solids and Structures

JF - International Journal of Solids and Structures

SN - 0020-7683

IS - 9-10

ER -