On the Second-Order Convergence of Biased Policy Gradient Algorithms

Siqiao Mu*, Diego Klabjan*

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

Since the objective functions of reinforcement learning problems are typically highly nonconvex, it is desirable that policy gradient, the most popular algorithm, escapes saddle points and arrives at second-order stationary points. Existing results only consider vanilla policy gradient algorithms with unbiased gradient estimators, but practical implementations under the infinite-horizon discounted reward setting are biased due to finite-horizon sampling. Moreover, actor-critic methods, whose second-order convergence has not yet been established, are also biased due to the critic approximation of the value function. We provide a novel second-order analysis of biased policy gradient methods, including the vanilla gradient estimator computed from Monte-Carlo sampling of trajectories as well as the double-loop actor-critic algorithm, where in the inner loop the critic improves the approximation of the value function via TD(0) learning. Separately, we also establish the convergence of TD(0) on Markov chains irrespective of initial state distribution.

Original languageEnglish (US)
Pages (from-to)36455-36485
Number of pages31
JournalProceedings of Machine Learning Research
Volume235
StatePublished - 2024
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: Jul 21 2024Jul 27 2024

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'On the Second-Order Convergence of Biased Policy Gradient Algorithms'. Together they form a unique fingerprint.

Cite this