TY - JOUR
T1 - Online adaptive machine learning based algorithm for implied volatility surface modeling
AU - Zeng, Yaxiong
AU - Klabjan, Diego
N1 - Funding Information:
This work is supported by CME Group, United States . We thank them for providing us with valuable data and we are grateful for their donation of the Maxeler FPGA hardware. We especially acknowledge Ryan Eavy, Executive Director, Architectures at CME Group for his support and introduction to Maxeler.
Funding Information:
This work is supported by CME Group, United States. We thank them for providing us with valuable data and we are grateful for their donation of the Maxeler FPGA hardware. We especially acknowledge Ryan Eavy, Executive Director, Architectures at CME Group for his support and introduction to Maxeler.
Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - In this work, we design a machine learning based method – online adaptive primal support vector regression (SVR) – to model the implied volatility surface (IVS). The algorithm proposed is the first derivation and implementation of an online primal kernel SVR. It features enhancements that allow efficient online adaptive learning by embedding the idea of local fitness and budget maintenance to dynamically update support vectors upon pattern drifts. For algorithm acceleration, we implement its most computationally intensive parts in a Field Programmable Gate Arrays hardware, where a 132x speedup over CPU is achieved during online prediction. Using intraday tick data from the E-mini S&P 500 options market, we show that the Gaussian kernel outperforms the linear kernel in regulating the size of support vectors, and that our empirical IVS algorithm beats two competing online methods with regards to model complexity and regression errors (the mean absolute percentage error of our algorithm is up to 13%). Best results are obtained at the center of the IVS grid due to its larger number of adjacent support vectors than the edges of the grid. Sensitivity analysis is also presented to demonstrate how hyper parameters affect the error rates and model complexity.
AB - In this work, we design a machine learning based method – online adaptive primal support vector regression (SVR) – to model the implied volatility surface (IVS). The algorithm proposed is the first derivation and implementation of an online primal kernel SVR. It features enhancements that allow efficient online adaptive learning by embedding the idea of local fitness and budget maintenance to dynamically update support vectors upon pattern drifts. For algorithm acceleration, we implement its most computationally intensive parts in a Field Programmable Gate Arrays hardware, where a 132x speedup over CPU is achieved during online prediction. Using intraday tick data from the E-mini S&P 500 options market, we show that the Gaussian kernel outperforms the linear kernel in regulating the size of support vectors, and that our empirical IVS algorithm beats two competing online methods with regards to model complexity and regression errors (the mean absolute percentage error of our algorithm is up to 13%). Best results are obtained at the center of the IVS grid due to its larger number of adjacent support vectors than the edges of the grid. Sensitivity analysis is also presented to demonstrate how hyper parameters affect the error rates and model complexity.
KW - FPGA application
KW - Implied volatility surface
KW - Kernel methods
KW - Machine learning
KW - Online adaptive learning
KW - Option pricing
KW - Stochastic gradient descent
KW - Support vector regression
UR - http://www.scopus.com/inward/record.url?scp=85052946142&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052946142&partnerID=8YFLogxK
U2 - 10.1016/j.knosys.2018.08.039
DO - 10.1016/j.knosys.2018.08.039
M3 - Article
AN - SCOPUS:85052946142
SN - 0950-7051
VL - 163
SP - 376
EP - 391
JO - Knowledge-Based Systems
JF - Knowledge-Based Systems
ER -