Abstract
In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/. The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord.
Original language | English (US) |
---|---|
Article number | 219 |
Journal | Scientific Data |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2021 |
Funding
We thank Gerald Moran and Bart Schraa (Siemens Healthcare), Suchandrima Banerjee and Naoyuki Takei (GE Healthcare) for sharing proprietary information and helping with setting up manufacturer-specific protocols, Nicholas Guenther and Alexandru Jora for setting up the git-annex server and procedure for hosting the public database, Charley Gros for helping with the analysis script, Paul Bautin for helping with manual corrections, Noémie Roberge for helping with the interactive plots, Carollyn Hurst, André Cyr, Arnaud Boré and Pierre Bellec (Functional Neuroimaging Unit), Charles Tremblay (Polytechnique Montreal), Antonys Melek and Habib Benali (PERFORM center, Concordia University), Ives Levesque (McGill University), Carol Lien (University of Minnesota) for helping with data acquisitions, Compute Ontario (https://computeontario.ca/) and Compute Canada (www.computecanada.ca) for providing the supercomputer infrastructure and all the volunteers who participated in the Spinal Cord MRI Public Database. This work was funded by the Canada Research Chair in Quantitative Magnetic Resonance Imaging [950-230815], the Canadian Institute of Health Research [CIHR FDN-143263], the Canada Foundation for Innovation [32454, 34824], the Fonds de Recherche du Québec - Santé [28826], the Fonds de Recherche du Québec - Nature et Technologies [2015-PR-182754], the Natural Sciences and Engineering Research Council of Canada [435897-2013], the Canada First Research Excellence Fund (IVADO and TransMedTech), the Quebec BioImaging Network [5886], Spinal Research (UK), Wings for Life (Austria, #169111) and Craig H. Neilsen Foundation (USA) for the INSPIRED project, the National Institutes of Health (NIH) through grants R00EB016689 and R01EB027779 (R.L.B.), the Instituto Investigación Carlos III (Spain, PI18/00823), the Czech Health Research Council grant n. NV18-04-00159, the Ministry of Health, Czech Republic - conceptual development of research organization (FNBr, 65269705), the National Imaging Facility and Queensland NMR Network (UQ), and SpinalCure Australia (M.J.R.), the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement n° 616905; Max Planck Society and European Research Council (ERC StG 758974); European Union’s Horizon 2020 research and innovation programme under the grant agreement No 681094, and the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0137; BMBF (01EW1711A & B) in the framework of ERA-NET NEURON, the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 634541, the Engineering and Physical Sciences Research Council (R006032/1, M020533/1) and Rosetrees Trust (UK), UK Multiple Sclerosis Society (892/08, 77/2017), NIHR Biomedical Research Centres, UCLH, the Italian Ministry of Health Young Researcher Grant 2013 (GR-2013-02358177), the FISR Project “Tecnopolo di nanotecnologia e fotonica per la medicina di precisione”(funded by MIUR/CNR, CUP B83B17000010001), TECNOMED project (funded by Regione Puglia, CUP B84I18000540002), Million Dollar Bike Ride from the University of Pennsylvania (MDBR-17-123-MPS), investigator-initiated PREdICT study at the Vall d’Hebron Institute of Oncology (Barcelona) funded by AstraZeneca and CRIS Cancer Foundation, the Wellcome Trust (UK) (203139/Z/16/Z), Systems, Technologies and Applications for Radiofrequency and Communications (STARaCOM) and Swiss National Science Foundation (PCEFP3_181362/1). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
ASJC Scopus subject areas
- Statistics and Probability
- Information Systems
- Education
- Computer Science Applications
- Statistics, Probability and Uncertainty
- Library and Information Sciences
Fingerprint
Dive into the research topics of 'Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers'. Together they form a unique fingerprint.Datasets
-
Metadata record for: Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers
Cohen-Adad, J. (Contributor), Alonso-Ortiz, E. (Contributor), Abramovic, M. (Contributor), Arneitz, C. (Contributor), Atcheson, N. (Contributor), Barlow, L. (Contributor), Barry, R. L. (Contributor), Barth, M. (Contributor), Battiston, M. (Contributor), Büchel, C. (Contributor), Budde, M. (Contributor), Callot, V. (Contributor), Combes, A. J. E. (Contributor), De Leener, B. (Contributor), Descoteaux, M. (Contributor), de Sousa, P. L. (Contributor), Dostál, M. (Contributor), Doyon, J. (Contributor), Dvorak, A. (Contributor), Eippert, F. (Contributor), Epperson, K. R. (Contributor), Epperson, K. S. (Contributor), Freund, P. (Contributor), Finsterbusch, J. (Contributor), Foias, A. (Contributor), Fratini, M. (Contributor), Fukunaga, I. (Contributor), Gandini Wheeler-Kingshott, C. A. M. (Contributor), Germani, G. (Contributor), Gilbert, G. (Contributor), Giove, F. (Contributor), Gros, C. (Contributor), Grussu, F. (Contributor), Hagiwara, A. (Contributor), Henry, P.-G. (Contributor), Horák, T. (Contributor), Hori, M. (Contributor), Joers, J. (Contributor), Kamiya, K. (Contributor), Karbasforoushan, H. (Contributor), Keřkovský, M. (Contributor), Khatibi, A. (Contributor), Kim, J.-W. (Contributor), Kinany, N. (Contributor), Kitzler, H. H. (Contributor), Kolind, S. (Contributor), Kong, Y. (Contributor), Kudlička, P. (Contributor), Kuntke, P. (Contributor), Kurniawan, N. D. (Contributor), Kusmia, S. (Contributor), Labounek, R. (Contributor), Laganà, M. M. (Contributor), Laule, C. (Contributor), Law, C. S. (Contributor), Lenglet, C. (Contributor), Leutritz, T. (Contributor), Liu, Y. (Contributor), Llufriu, S. (Contributor), Mackey, S. (Contributor), Martinez-Heras, E. (Contributor), Mattera, L. (Contributor), Nestrasil, I. (Contributor), O’Grady, K. P. (Contributor), Papinutto, N. (Contributor), Papp, D. (Contributor), Pareto, D. (Contributor), Parrish, T. B. (Contributor), Pichiecchio, A. (Contributor), Prados, F. (Contributor), Rovira, À. (Contributor), Ruitenberg, M. J. (Contributor), Samson, R. S. (Contributor), Savini, G. (Contributor), Seif, M. (Contributor), Seifert, A. C. (Contributor), Smith, A. K. (Contributor), Smith, S. A. (Contributor), Smith, Z. A. (Contributor), Solana, E. (Contributor), Suzuki, Y. (Contributor), Tackley, G. (Contributor), Tinnermann, A. (Contributor), Valošek, J. (Contributor), Van De Ville, D. (Contributor), Yiannakas, M. C. (Contributor), Weber II, K. A. (Contributor), Weiskopf, N. (Contributor), Wise, R. G. (Contributor), Wyss, P. O. (Contributor) & Xu, J. (Contributor), figshare, 2021
DOI: 10.6084/m9.figshare.14052269.v1, https://springernature.figshare.com/articles/dataset/Metadata_record_for_Open-access_quantitative_MRI_data_of_the_spinal_cord_and_reproducibility_across_participants_sites_and_manufacturers/14052269/1
Dataset