Opposite translational control of GLUT1 and GLUT4 glucose transporter mRNAs in response insulin. Role of mammalian target of rapamycin, protein kinase B, and phosphatidylinositol 3-kinase in GLUT1 mRNA translation

Celia Taha, Zhi Liu, Jing Jin, Hadi Al-Hasani, Nahum Sonenberg, Amira Klip*

*Corresponding author for this work

Research output: Contribution to journalArticle

122 Citations (Scopus)

Abstract

Prolonged exposure of 3T3-L1 adipocytes to insulin increases GLUT1 protein content while diminishing GLUT4. These changes arise in part from changes in mRNA transcription. Here we examined whether there are also specific effects of insulin on GLUT1 and GLUT4 mRNA translation. Insulin enhanced association of GLUT1 mRNA with polyribosomes and decreased association with monosomes, suggesting increased translation. Conversely, insulin arrested the majority of GLUT4 transcripts in monosomes. Insulin inactivates the translational suppressor eukaryotic initiation factor 4E- binding protein-1 (4E-BP1) through the mammalian target of rapamycin (mTOR). Hence, we examined the effect of rapamycin on GLUT1 mRNA translation and protein expression. Rapamycin abrogated the insulin-mediated increase in GLUT1 protein synthesis through partial inhibition of GLUT1 mRNA translation and partial inhibition of the rise in GLUT1 mRNA. 4E-BP1 inhibited GLUT1 mRNA translation in vitro. Because phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB), in concert with mTOR, inactivate 4E-BP1, we explored their role in GLUT1 protein expression. Cotransfection of cytomegalovirus promoter-driven, hemagglutinin epitope-tagged GLUT1 with dominant inhibitory mutants of PI3K or PKB inhibited the insulin-elicited increase in hemagglutinin-tagged GLUT1 protein. These results unravel the opposite effects of insulin on GLUT1 and GLUT4 mRNA translation. Increased GLUT1 mRNA translation appears to occur via the PI3K/PKB/mTOR/4E-BP1 cascade.

Original languageEnglish (US)
Pages (from-to)33085-33091
Number of pages7
JournalJournal of Biological Chemistry
Volume274
Issue number46
DOIs
StatePublished - Nov 12 1999

Fingerprint

TOR Serine-Threonine Kinases
Phosphatidylinositol 3-Kinase
Proto-Oncogene Proteins c-akt
Facilitative Glucose Transport Proteins
Protein Biosynthesis
Glucose Transporter Type 1
Insulin
Messenger RNA
Sirolimus
Carrier Proteins
Hemagglutinins
Eukaryotic Initiation Factor-4E
Tacrolimus Binding Proteins
Polyribosomes
Association reactions
Cytomegalovirus
Adipocytes
Epitopes
Transcription

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

@article{142f76b10db74230a54ca5a711b69767,
title = "Opposite translational control of GLUT1 and GLUT4 glucose transporter mRNAs in response insulin. Role of mammalian target of rapamycin, protein kinase B, and phosphatidylinositol 3-kinase in GLUT1 mRNA translation",
abstract = "Prolonged exposure of 3T3-L1 adipocytes to insulin increases GLUT1 protein content while diminishing GLUT4. These changes arise in part from changes in mRNA transcription. Here we examined whether there are also specific effects of insulin on GLUT1 and GLUT4 mRNA translation. Insulin enhanced association of GLUT1 mRNA with polyribosomes and decreased association with monosomes, suggesting increased translation. Conversely, insulin arrested the majority of GLUT4 transcripts in monosomes. Insulin inactivates the translational suppressor eukaryotic initiation factor 4E- binding protein-1 (4E-BP1) through the mammalian target of rapamycin (mTOR). Hence, we examined the effect of rapamycin on GLUT1 mRNA translation and protein expression. Rapamycin abrogated the insulin-mediated increase in GLUT1 protein synthesis through partial inhibition of GLUT1 mRNA translation and partial inhibition of the rise in GLUT1 mRNA. 4E-BP1 inhibited GLUT1 mRNA translation in vitro. Because phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB), in concert with mTOR, inactivate 4E-BP1, we explored their role in GLUT1 protein expression. Cotransfection of cytomegalovirus promoter-driven, hemagglutinin epitope-tagged GLUT1 with dominant inhibitory mutants of PI3K or PKB inhibited the insulin-elicited increase in hemagglutinin-tagged GLUT1 protein. These results unravel the opposite effects of insulin on GLUT1 and GLUT4 mRNA translation. Increased GLUT1 mRNA translation appears to occur via the PI3K/PKB/mTOR/4E-BP1 cascade.",
author = "Celia Taha and Zhi Liu and Jing Jin and Hadi Al-Hasani and Nahum Sonenberg and Amira Klip",
year = "1999",
month = "11",
day = "12",
doi = "10.1074/jbc.274.46.33085",
language = "English (US)",
volume = "274",
pages = "33085--33091",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "46",

}

Opposite translational control of GLUT1 and GLUT4 glucose transporter mRNAs in response insulin. Role of mammalian target of rapamycin, protein kinase B, and phosphatidylinositol 3-kinase in GLUT1 mRNA translation. / Taha, Celia; Liu, Zhi; Jin, Jing; Al-Hasani, Hadi; Sonenberg, Nahum; Klip, Amira.

In: Journal of Biological Chemistry, Vol. 274, No. 46, 12.11.1999, p. 33085-33091.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Opposite translational control of GLUT1 and GLUT4 glucose transporter mRNAs in response insulin. Role of mammalian target of rapamycin, protein kinase B, and phosphatidylinositol 3-kinase in GLUT1 mRNA translation

AU - Taha, Celia

AU - Liu, Zhi

AU - Jin, Jing

AU - Al-Hasani, Hadi

AU - Sonenberg, Nahum

AU - Klip, Amira

PY - 1999/11/12

Y1 - 1999/11/12

N2 - Prolonged exposure of 3T3-L1 adipocytes to insulin increases GLUT1 protein content while diminishing GLUT4. These changes arise in part from changes in mRNA transcription. Here we examined whether there are also specific effects of insulin on GLUT1 and GLUT4 mRNA translation. Insulin enhanced association of GLUT1 mRNA with polyribosomes and decreased association with monosomes, suggesting increased translation. Conversely, insulin arrested the majority of GLUT4 transcripts in monosomes. Insulin inactivates the translational suppressor eukaryotic initiation factor 4E- binding protein-1 (4E-BP1) through the mammalian target of rapamycin (mTOR). Hence, we examined the effect of rapamycin on GLUT1 mRNA translation and protein expression. Rapamycin abrogated the insulin-mediated increase in GLUT1 protein synthesis through partial inhibition of GLUT1 mRNA translation and partial inhibition of the rise in GLUT1 mRNA. 4E-BP1 inhibited GLUT1 mRNA translation in vitro. Because phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB), in concert with mTOR, inactivate 4E-BP1, we explored their role in GLUT1 protein expression. Cotransfection of cytomegalovirus promoter-driven, hemagglutinin epitope-tagged GLUT1 with dominant inhibitory mutants of PI3K or PKB inhibited the insulin-elicited increase in hemagglutinin-tagged GLUT1 protein. These results unravel the opposite effects of insulin on GLUT1 and GLUT4 mRNA translation. Increased GLUT1 mRNA translation appears to occur via the PI3K/PKB/mTOR/4E-BP1 cascade.

AB - Prolonged exposure of 3T3-L1 adipocytes to insulin increases GLUT1 protein content while diminishing GLUT4. These changes arise in part from changes in mRNA transcription. Here we examined whether there are also specific effects of insulin on GLUT1 and GLUT4 mRNA translation. Insulin enhanced association of GLUT1 mRNA with polyribosomes and decreased association with monosomes, suggesting increased translation. Conversely, insulin arrested the majority of GLUT4 transcripts in monosomes. Insulin inactivates the translational suppressor eukaryotic initiation factor 4E- binding protein-1 (4E-BP1) through the mammalian target of rapamycin (mTOR). Hence, we examined the effect of rapamycin on GLUT1 mRNA translation and protein expression. Rapamycin abrogated the insulin-mediated increase in GLUT1 protein synthesis through partial inhibition of GLUT1 mRNA translation and partial inhibition of the rise in GLUT1 mRNA. 4E-BP1 inhibited GLUT1 mRNA translation in vitro. Because phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB), in concert with mTOR, inactivate 4E-BP1, we explored their role in GLUT1 protein expression. Cotransfection of cytomegalovirus promoter-driven, hemagglutinin epitope-tagged GLUT1 with dominant inhibitory mutants of PI3K or PKB inhibited the insulin-elicited increase in hemagglutinin-tagged GLUT1 protein. These results unravel the opposite effects of insulin on GLUT1 and GLUT4 mRNA translation. Increased GLUT1 mRNA translation appears to occur via the PI3K/PKB/mTOR/4E-BP1 cascade.

UR - http://www.scopus.com/inward/record.url?scp=0032730328&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032730328&partnerID=8YFLogxK

U2 - 10.1074/jbc.274.46.33085

DO - 10.1074/jbc.274.46.33085

M3 - Article

VL - 274

SP - 33085

EP - 33091

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 46

ER -