Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart

Benjamen A. Filas, Igor R. Efimov, Larry A. Taber*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

53 Scopus citations


Optical coherence tomography (OCT) was used to investigate morphogenesis of the embryonic chick heart during the first phase of looping (c-looping), as the heart bends and twists into a c-shaped tube. The present study focuses on the morphomechanical effects of the splanchnopleure (SPL), a membrane that has been shown to play a major role in cardiac torsion by pressing against the ventral surface of the heart. Without the SPL, rightward torsion (rotation) is delayed. The images show that compressive forces exerted by the SPL alter the shapes of the heart tube and primitive atria, as well as their spatial relationships. The SPL normally holds the heart in the plane of the embryo and forces cardiac jelly (CJ) out of adjacent regions in the atria. When the SPL is removed, cross-sections become more circular, CJ is more uniformly distributed, and the heart displaces ventrally. In addition, OCT-based morphogenetic strain maps were measured during looping by tracking the three-dimensional motions of microspheres placed on the myocardium. The spatial-temporal patterns of the strains correlated well with the observed behavior of the heart, including delayed torsion that occurs in SPL-lacking embryos. These results illustrate the potential of OCT as a tool in studies of morphogenesis, as well as provide a better understanding of the mechanical forces that drive cardiac looping.

Original languageEnglish (US)
Pages (from-to)1057-1068
Number of pages12
JournalAnatomical Record
Issue number9
StatePublished - Sep 2007


  • Biomechanics
  • Cardiac looping
  • Heart development
  • Morphogenesis
  • Myocardial strain

ASJC Scopus subject areas

  • Anatomy
  • Biotechnology
  • Histology
  • Ecology, Evolution, Behavior and Systematics


Dive into the research topics of 'Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart'. Together they form a unique fingerprint.

Cite this