TY - JOUR
T1 - Optical markers in duodenal mucosa predict the presence of pancreatic cancer
AU - Liu, Yang
AU - Brand, Randall E.
AU - Turzhitsky, Vladimir
AU - Kim, Young L.
AU - Roy, Hemant K.
AU - Hasabou, Nahla
AU - Sturgis, Charles
AU - Shah, Dhiren
AU - Hall, Curtis
AU - Backman, Vadim
PY - 2007/8/1
Y1 - 2007/8/1
N2 - Purpose: Pancreatic cancer remains one of the most deadly cancers and carries a dismal 5-year survival rate of <5%. Therefore, there is urgent need to develop a highly accurate and minimally invasive (e.g., without instrumentation of the pancreatic duct given high rate of complications) method of detection. Our group has developed a collection of novel light-scattering technologies that provide unprecedented quantitative assessment of the nanoscale architecture of the epithelium. We propose a novel approach to predict pancreatic cancer through the assessment of the adjacent periampullary duodenal mucosa without any interrogation of the pancreatic duct or imaging of the pancreas. Experimental Design: Endoscopically and histologically normal-appearing periampullary duodenal biopsies obtained from 19 pancreatic cancer patients were compared with those obtained at endoscopy from 32 controls. Biopsies were analyzed using our newly developed optical technologies, four-dimensional elastic light-scattering fingerprinting (4D-ELF) and low-coherence enhanced backscattering (LEBS) spectroscopy. Results: 4D-ELF - and LEBS-derived optical markers from normal-appearing periampullary duodenal mucosa can discriminate between pancreatic cancer patients and normal controls with 95% sensitivity and 91% specificity. Moreover, the diagnostic performance of these optical markers was not compromised by confounding factors such as tumor location and stage. Conclusions: Here, we showed, for the first time, that optical analysis of histologically normal duodenal mucosa can predict the presence of pancreatic cancer without direct visualization of the pancreas.
AB - Purpose: Pancreatic cancer remains one of the most deadly cancers and carries a dismal 5-year survival rate of <5%. Therefore, there is urgent need to develop a highly accurate and minimally invasive (e.g., without instrumentation of the pancreatic duct given high rate of complications) method of detection. Our group has developed a collection of novel light-scattering technologies that provide unprecedented quantitative assessment of the nanoscale architecture of the epithelium. We propose a novel approach to predict pancreatic cancer through the assessment of the adjacent periampullary duodenal mucosa without any interrogation of the pancreatic duct or imaging of the pancreas. Experimental Design: Endoscopically and histologically normal-appearing periampullary duodenal biopsies obtained from 19 pancreatic cancer patients were compared with those obtained at endoscopy from 32 controls. Biopsies were analyzed using our newly developed optical technologies, four-dimensional elastic light-scattering fingerprinting (4D-ELF) and low-coherence enhanced backscattering (LEBS) spectroscopy. Results: 4D-ELF - and LEBS-derived optical markers from normal-appearing periampullary duodenal mucosa can discriminate between pancreatic cancer patients and normal controls with 95% sensitivity and 91% specificity. Moreover, the diagnostic performance of these optical markers was not compromised by confounding factors such as tumor location and stage. Conclusions: Here, we showed, for the first time, that optical analysis of histologically normal duodenal mucosa can predict the presence of pancreatic cancer without direct visualization of the pancreas.
UR - http://www.scopus.com/inward/record.url?scp=34547691201&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547691201&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-06-1648
DO - 10.1158/1078-0432.CCR-06-1648
M3 - Article
C2 - 17671121
AN - SCOPUS:34547691201
SN - 1078-0432
VL - 13
SP - 4392
EP - 4399
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 15
ER -