Optical pulse-shaping for internal cooling of molecules

Chien Yu Lien, Scott R. Williams, Brian Odom*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

We consider the use of pulse-shaped broadband femtosecond lasers to optically cool rotational and vibrational degrees of freedom of molecules. Since this approach relies on cooling rotational and vibrational quanta by exciting an electronic transition, it is most easily applicable to molecules with similar ground and excited potential energy surfaces, such that the vibrational state is usually unchanged during electronic relaxation. Compared with schemes that cool rotations by exciting vibrations, this approach achieves internal cooling on the orders-of-magnitude faster electronic decay timescale and is potentially applicable to apolar molecules. For AlH+, a candidate species, a rate-equation simulation indicates that rovibrational equilibrium should be achievable in 8 μs. In addition, we report laboratory demonstration of optical pulse shaping with sufficient resolution and power for rotational cooling of AlH+.

Original languageEnglish (US)
Pages (from-to)18825-18829
Number of pages5
JournalPhysical Chemistry Chemical Physics
Volume13
Issue number42
DOIs
StatePublished - Nov 14 2011

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Optical pulse-shaping for internal cooling of molecules'. Together they form a unique fingerprint.

Cite this