Abstract
We report the vibrational and optical properties of the 'defect' perovskites Cs2SnX6 (X = Cl, Br, I) as well as their use as hole-transporting materials (HTMs) in solar cells. All three air-stable compounds were characterized using powder X-ray diffraction and Rietveld refinement. Far-IR reflectance, Raman, and UV-vis spectroscopy as well as electronic band structure calculations show that the compounds are direct band gap semiconductors with a pronounced effect of the halogen atom on the size of the energy gap and the vibrational frequencies. Scanning electron microscopy and atomic force microscopy confirmed that the morphology of the perovskite films deposited from N,N-dimethylformamide solutions on TiO2 substrates also strongly depends on the chemical composition of the materials. The Cs2SnX6 perovskites were introduced as hole-transporting materials in dye-sensitized solar cells, based on mesoporous titania electrodes sensitized with various organic and metal-organic dyes. The solar cells based on Cs2SnI6 HTM and the Z907 dye performed best with a maximum power conversion efficiency of 4.23% at 1 sun illumination. The higher performance of Cs2SnI6 is attributed to efficient charge transport in the bulk material and hole extraction at the perovskite-Pt interface, as evidenced by electrochemical impedance spectroscopy.
Original language | English (US) |
---|---|
Pages (from-to) | 11777-11785 |
Number of pages | 9 |
Journal | Journal of Physical Chemistry C |
Volume | 120 |
Issue number | 22 |
DOIs | |
State | Published - Jun 9 2016 |
Funding
We gratefully acknowledge Dimitrios Palles and Eustratios Kamitsos who recorded the far-IR reflectance spectra and performed the Kramers-Kronig transformation. Financial support from FP7 European Union (Marie Curie Initial Training Network DESTINY/316494) as well as from "Advanced Materials and Devices for Collection and Energy Management" project within GSRT's KRIPIS action, funded by Greece and the European Regional Development Fund of the European Union under NSRF 2007-2013 and the Regional Operational Program of Attica are acknowledged. At Northwestern, research was supported by the ANSER Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001059.
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- General Energy
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films