Abstract
Transition metal dichalcogenides can be synthesized in a wide range of structures. 1D geometries, including nanotubes and nanowires, are especially intriguing due to enhanced light-matter interactions stemming from both the thickness and width possessing subwavelength dimensions. In this letter, we demonstrate the synthesis of 1D MoS2 nanobelts through chemical vapor deposition and examine the mechanism driving the formation of this material. We also report enhanced light scattering within these structures. Finally, we investigate the phototransistor behavior of MoS2 nanobelts and observed a photoresponsivity around 1.5 A/W, an order of magnitude greater than analogous multilayer 2D MoS2 sheets reported previously.
Original language | English (US) |
---|---|
Pages (from-to) | 6799-6804 |
Number of pages | 6 |
Journal | ACS Applied Materials and Interfaces |
Volume | 10 |
Issue number | 8 |
DOIs | |
State | Published - Feb 28 2018 |
Funding
This material is based upon work supported by the National Science Foundation under Grant DMR-1507810. This work made use of the EPIC, Keck-II, and/or SPID facility(ies) of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. This work also utilized Northwestern University Micro/Nano Fabrication Facility (NUFAB), which is partially supported by Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the Materials Research Science and Engineering Center (DMR-1720139), the State of Illinois, and Northwestern University. This material is based upon work supported by the National Science Foundation under Grant DMR-1507810. This work made use of the EPIC Keck-II, and/or SPID facility(ies) of Northwestern University's NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. This work also utilized Northwestern University Micro/Nano Fabrication Facility (NUFAB), which is partially supported by Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the Materials Research Science and Engineering Center (DMR-1720139), the State of Illinois, and Northwestern University.
Keywords
- MoS
- chemical vapor deposition
- photodetectors
- synthesis
- transition metal dichalcogenides
ASJC Scopus subject areas
- General Materials Science