Optimal trajectory design for well-conditioned parameter estimation

Andrew D. Wilson, Todd D. Murphey

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

When attempting to estimate parameters in a dynamical system, it is often beneficial to systematically design the experimental trajectory. This paper presents a method of generating trajectories using an extension of a nonlinear, infinite-dimensional, projection-based trajectory optimization algorithm. A reformulated objective function is derived for the algorithm to minimize the condition number of the Hessian of the batch-least squares identification method. The batch least-squares method is then used to estimate parameters of the nonlinear system. A simulation example is used to demonstrate that an arbitrarily designed trajectory can lead to an ill-conditioned Hessian matrix in the batch-least squares method, which in turn leads to a less precise set of identified parameters. An example using Monte-Carlo simulations of both trajectories shows a reduction in the variance of identified parameters for an example cart-pendulum system.

Original languageEnglish (US)
Title of host publication2013 IEEE International Conference on Automation Science and Engineering, CASE 2013
Pages13-19
Number of pages7
DOIs
StatePublished - 2013
Event2013 IEEE International Conference on Automation Science and Engineering, CASE 2013 - Madison, WI, United States
Duration: Aug 17 2013Aug 20 2013

Publication series

NameIEEE International Conference on Automation Science and Engineering
ISSN (Print)2161-8070
ISSN (Electronic)2161-8089

Other

Other2013 IEEE International Conference on Automation Science and Engineering, CASE 2013
Country/TerritoryUnited States
CityMadison, WI
Period8/17/138/20/13

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Optimal trajectory design for well-conditioned parameter estimation'. Together they form a unique fingerprint.

Cite this