Abstract
The ability to generate patient-specific cells through induced pluripotent stem cell (iPSC) technology has encouraged development of three-dimensional extracellular matrix (ECM) scaffolds as bioactive substrates for cell differentiation with the long-range goal of bioengineering organs for transplantation. Perfusion decellularization uses the vasculature to remove resident cells, leaving an intact ECM template wherein new cells grow; however, a rigorous evaluative framework assessing ECM structural and biochemical quality is lacking. To address this, we developed histologic scoring systems to quantify fundamental characteristics of decellularized rodent kidneys: ECM structure (tubules, vessels, glomeruli) and cell removal. We also assessed growth factor retention - indicating matrix biofunctionality. These scoring systems evaluated three strategies developed to decellularize kidneys (1% Triton X-100, 1% Triton X-100/0.1% sodium dodecyl sulfate (SDS) and 0.02% Trypsin-0.05% EGTA/1% Triton X-100). Triton and Triton/SDS preserved renal microarchitecture and retained matrix-bound basic fibroblast growth factor and vascular endothelial growth factor. Trypsin caused structural deterioration and growth factor loss. Triton/SDS-decellularized scaffolds maintained 3h of leak-free blood flow in a rodent transplantation model and supported repopulation with human iPSC-derived endothelial cells and tubular epithelial cells ex vivo. Taken together, we identify an optimal Triton/SDS-based decellularization strategy that produces a biomatrix that may ultimately serve as a rodent model for kidney bioengineering. The authors validate an optimal detergent-based protocol for decellularization of rodent whole-kidney scaffolds, showing that decellularized scaffolds retain an intact vasculature that can be transplanted or re-endothelialized, wand that the scaffold supports proliferation and tubule formation by human renal cortical tubular epithelial cells.
Original language | English (US) |
---|---|
Pages (from-to) | 64-75 |
Number of pages | 12 |
Journal | American Journal of Transplantation |
Volume | 15 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2015 |
Funding
ASJC Scopus subject areas
- Transplantation
- Pharmacology (medical)
- Immunology and Allergy