Organelle transport in cultured drosophila cells: S2 cell line and primary neurons

Wen Lu*, Urko del Castillo, Vladimir I Gelfand

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Drosophila S2 cells plated on a coverslip in the presence of any actin-depolymerizing drug form long unbranched processes filled with uniformly polarized microtubules. Organelles move along these processes by microtubule motors. Easy maintenance, high sensitivity to RNAi-mediated protein knock-down and efficient procedure for creating stable cell lines make Drosophila S2 cells an ideal model system to study cargo transport by live imaging. The results obtained with S2 cells can be further applied to a more physiologically relevant system: axonal transport in primary neurons cultured from dissociated Drosophila embryos. Cultured neurons grow long neurites filled with bundled microtubules, very similar to S2 processes. Like in S2 cells, organelles in cultured neurons can be visualized by either organelle-specific fluorescent dyes or by using fluorescent organelle markers encoded by DNA injected into early embryos or expressed in transgenic flies. Therefore, organelle transport can be easily recorded in neurons cultured on glass coverslips using living imaging. Here we describe procedures for culturing and visualizing cargo transport in Drosophila S2 cells and primary neurons. We believe that these protocols make both systems accessible for labs studying cargo transport.

Original languageEnglish (US)
JournalJournal of visualized experiments : JoVE
Issue number81
StatePublished - Jan 1 2013

Funding

ASJC Scopus subject areas

  • General Neuroscience
  • General Chemical Engineering
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'Organelle transport in cultured drosophila cells: S2 cell line and primary neurons'. Together they form a unique fingerprint.

Cite this