TY - JOUR
T1 - Organo-f-Element Thermochemistry. Absolute Metal-Ligand Bond Disruption Enthalpies in Bis(pentamethylcyclopentadienyl)samarium Hydrocarbyl, Hydride, Dialkylamide, Alkoxide, Halide, Thiolate, and Phosphide Complexes. Implications for Organolanthanide Bonding and Reactivity
AU - Nolan, Steven P.
AU - Stern, David
AU - Marks, Tobin J.
PY - 1989/9
Y1 - 1989/9
N2 - Absolute samarium—ligand bond disruption enthalpies in the series Cp'2Sm-R/X (Cp' = η5-(CH3)5C5) have been measured by iodinolytic and alcoholytic isoperibol titration calorimetry of Cp'2Sm/Cp'2Sm-I)n,(Cp'2Sm-OtBu)2/Cp'2Sm-R/X ensembles in toluene. Derived D(Cp'Sm-R/X) values in toluene solution are as follows (kcal/mol, R/X): 47.0 (1.5), CH(SiMe3)2; 45.0 (1.5), η3-C3H5; 93.2, CCPh; 54.2 (3.0), H; 48.2 (1.8), NMe2; 82.4 (3.5), OtBu; 81.3 (1.0), OCH(tBu)2; 97.1 (3.0), Cl; 83.6 (1.5), Br; 69.4 (2.4), I; 7 3.4 (2.4), SnPr; 32.6 (2.0), PEt2. D(Cp'2Sm-THF) and D(Cp'2Sm(THF)-THF) values were also determined in toluene and are 7.3 (0.4) and 4.9 (1.0) kcal/mol, respectively, while D(Cp'2Sm(THF)-I) was found to be 72.7 (2.9) kcal/mol. The observed D(Sm-halogen) parameters are close to the D1 values of the corresponding samarium trihalides. Important trends in D(Cp'2Sm-R/X) include a relatively small value of D(Sm-H)-D(Sm-alkyl), a large value of D(Sm-I)-D(Sm-alkyl), and generally strong bonds to group 15 and group 16 ligands. A variety of Sm-centered ligand transposition and oxidative addition/reductive elimination processes are analyzed in light of the present data. The formation of strong Sm-heteroelement bonds makes an important contribution to the driving force. Hydrocarbon functionalization via dinuclear Sm(II)→ Sm(III) oxidative addition processes is only expected to be exothermic in special cases.
AB - Absolute samarium—ligand bond disruption enthalpies in the series Cp'2Sm-R/X (Cp' = η5-(CH3)5C5) have been measured by iodinolytic and alcoholytic isoperibol titration calorimetry of Cp'2Sm/Cp'2Sm-I)n,(Cp'2Sm-OtBu)2/Cp'2Sm-R/X ensembles in toluene. Derived D(Cp'Sm-R/X) values in toluene solution are as follows (kcal/mol, R/X): 47.0 (1.5), CH(SiMe3)2; 45.0 (1.5), η3-C3H5; 93.2, CCPh; 54.2 (3.0), H; 48.2 (1.8), NMe2; 82.4 (3.5), OtBu; 81.3 (1.0), OCH(tBu)2; 97.1 (3.0), Cl; 83.6 (1.5), Br; 69.4 (2.4), I; 7 3.4 (2.4), SnPr; 32.6 (2.0), PEt2. D(Cp'2Sm-THF) and D(Cp'2Sm(THF)-THF) values were also determined in toluene and are 7.3 (0.4) and 4.9 (1.0) kcal/mol, respectively, while D(Cp'2Sm(THF)-I) was found to be 72.7 (2.9) kcal/mol. The observed D(Sm-halogen) parameters are close to the D1 values of the corresponding samarium trihalides. Important trends in D(Cp'2Sm-R/X) include a relatively small value of D(Sm-H)-D(Sm-alkyl), a large value of D(Sm-I)-D(Sm-alkyl), and generally strong bonds to group 15 and group 16 ligands. A variety of Sm-centered ligand transposition and oxidative addition/reductive elimination processes are analyzed in light of the present data. The formation of strong Sm-heteroelement bonds makes an important contribution to the driving force. Hydrocarbon functionalization via dinuclear Sm(II)→ Sm(III) oxidative addition processes is only expected to be exothermic in special cases.
UR - http://www.scopus.com/inward/record.url?scp=33845183199&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845183199&partnerID=8YFLogxK
U2 - 10.1021/ja00202a027
DO - 10.1021/ja00202a027
M3 - Article
AN - SCOPUS:33845183199
SN - 0002-7863
VL - 111
SP - 7844
EP - 7853
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 20
ER -