TY - JOUR
T1 - Overexpression of Cyclooxygenase-2 is Sufficient to Induce Tumorigenesis in Transgenic Mice
AU - Liu, Catherine H.
AU - Chang, Sung Hee
AU - Narko, Kirsi
AU - Trifan, Ovidiu C.
AU - Wu, Ming Tao
AU - Smith, Elizabeth
AU - Haudenschild, Christian
AU - Lane, Timothy F
AU - Hla, Timothy
PY - 2001/1/25
Y1 - 2001/1/25
N2 - The cyclooxygenase (COX)-2 gene encodes an inducible prostaglandin synthase enzyme that is overexpressed in adenocarcinomas and other tumors. Deletion of the murine Cox-2 gene in Min mice reduced the incidence of intestinal tumors, suggesting that it is required for tumorigenesis. However, it is not known if overexpression of Cox-2 is sufficient to induce tumorigenic transformation. We have derived transgenic mice that overexpress the human COX-2 gene in the mammary glands using the murine mammary tumor virus promoter. The human Cox-2 mRNA and protein are expressed in mammary glands of female transgenic mice and were strongly induced during pregnancy and lactation. Female virgin Cox-2 transgenic mice showed precocious lobuloalveolar differentiation and enhanced expression of the β-casein gene, which was inhibited by the Cox inhibitor indomethacin. Mammary gland involution was delayed in Cox-2 transgenic mice with a decrease in apoptotic index of mammary epithelial cells. Multiparous but not virgin females exhibited a greatly exaggerated incidence of focal mammary gland hyperplasia, dysplasia, and transformation into metastatic tumors. Cox-2-induced tumor tissue expressed reduced levels of the proapoptotic proteins Bax and Bcl-xL and an increase in the anti-apoptotic protein Bcl-2, suggesting that decreased apoptosis of mammary epithelial cells contributes to tumorigenesis. These data indicate that enhanced Cox-2 expression is sufficient to induce mammary gland tumorigenesis. Therefore, inhibition of Cox-2 may represent a mechanism-based chemopreventive approach for carcinogenesis.
AB - The cyclooxygenase (COX)-2 gene encodes an inducible prostaglandin synthase enzyme that is overexpressed in adenocarcinomas and other tumors. Deletion of the murine Cox-2 gene in Min mice reduced the incidence of intestinal tumors, suggesting that it is required for tumorigenesis. However, it is not known if overexpression of Cox-2 is sufficient to induce tumorigenic transformation. We have derived transgenic mice that overexpress the human COX-2 gene in the mammary glands using the murine mammary tumor virus promoter. The human Cox-2 mRNA and protein are expressed in mammary glands of female transgenic mice and were strongly induced during pregnancy and lactation. Female virgin Cox-2 transgenic mice showed precocious lobuloalveolar differentiation and enhanced expression of the β-casein gene, which was inhibited by the Cox inhibitor indomethacin. Mammary gland involution was delayed in Cox-2 transgenic mice with a decrease in apoptotic index of mammary epithelial cells. Multiparous but not virgin females exhibited a greatly exaggerated incidence of focal mammary gland hyperplasia, dysplasia, and transformation into metastatic tumors. Cox-2-induced tumor tissue expressed reduced levels of the proapoptotic proteins Bax and Bcl-xL and an increase in the anti-apoptotic protein Bcl-2, suggesting that decreased apoptosis of mammary epithelial cells contributes to tumorigenesis. These data indicate that enhanced Cox-2 expression is sufficient to induce mammary gland tumorigenesis. Therefore, inhibition of Cox-2 may represent a mechanism-based chemopreventive approach for carcinogenesis.
UR - http://www.scopus.com/inward/record.url?scp=0035947709&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035947709&partnerID=8YFLogxK
U2 - 10.1074/jbc.M010787200
DO - 10.1074/jbc.M010787200
M3 - Article
C2 - 11278747
AN - SCOPUS:0035947709
SN - 0021-9258
VL - 276
SP - 18563
EP - 18569
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 21
ER -